Enhancing Domain Generalization with Auto-encoders

被引:0
作者
Goerttler, Thomas [1 ]
Obermayer, Klaus [1 ,2 ]
机构
[1] Tech Univ Berlin, Chair Neural Informat Proc, Berlin, Germany
[2] Bernstein Ctr Computat Neurosci Berlin, Berlin, Germany
来源
INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, INTELLISYS 2024 | 2024年 / 1065卷
关键词
Auto-encoders; Domain generalization; Domain shift;
D O I
10.1007/978-3-031-66329-1_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In deep learning, generalization under distribution shift is still a challenge. Domain generalization is an example of domain shift where the task is to train models to perform effectively on unseen data from different but related domains. In this paper, we introduce novel solutions for domain generalization and integrate a sparse auto-encoder before the classifier for multi-class image classification. Our three approaches focus on reconstructing class-specific features while neglecting domain-specific information. They all increase the model performance on a synthetic dataset, and one approach slightly increases the performance on the iWildCam 2020 dataset. This underscores the importance of exploring techniques to support deep learning models' resilience against distribution shifts.
引用
收藏
页码:486 / 495
页数:10
相关论文
共 21 条
[21]  
Zhang M, 2021, ADV NEUR IN, V34