Enhancing Domain Generalization with Auto-encoders

被引:0
|
作者
Goerttler, Thomas [1 ]
Obermayer, Klaus [1 ,2 ]
机构
[1] Tech Univ Berlin, Chair Neural Informat Proc, Berlin, Germany
[2] Bernstein Ctr Computat Neurosci Berlin, Berlin, Germany
关键词
Auto-encoders; Domain generalization; Domain shift;
D O I
10.1007/978-3-031-66329-1_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In deep learning, generalization under distribution shift is still a challenge. Domain generalization is an example of domain shift where the task is to train models to perform effectively on unseen data from different but related domains. In this paper, we introduce novel solutions for domain generalization and integrate a sparse auto-encoder before the classifier for multi-class image classification. Our three approaches focus on reconstructing class-specific features while neglecting domain-specific information. They all increase the model performance on a synthetic dataset, and one approach slightly increases the performance on the iWildCam 2020 dataset. This underscores the importance of exploring techniques to support deep learning models' resilience against distribution shifts.
引用
收藏
页码:486 / 495
页数:10
相关论文
共 50 条
  • [1] Fisher Auto-Encoders
    Elkhalil, Khalil
    Hasan, Ali
    Ding, Jie
    Farsiu, Sina
    Tarokh, Vahid
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130 : 352 - 360
  • [2] Ornstein Auto-Encoders
    Choi, Youngwon
    Won, Joong-Ho
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 2172 - 2178
  • [3] Transforming Auto-Encoders
    Hinton, Geoffrey E.
    Krizhevsky, Alex
    Wang, Sida D.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I, 2011, 6791 : 44 - 51
  • [4] Correlated Variational Auto-Encoders
    Tang, Da
    Liang, Dawen
    Jebara, Tony
    Ruozzi, Nicholas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [5] Hyperspherical Variational Auto-Encoders
    Davidson, Tim R.
    Falorsi, Luca
    De Cao, Nicola
    Kipf, Thomas
    Tomczak, Jakub M.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2018, : 856 - 865
  • [6] Directed Graph Auto-Encoders
    Kollias, Georgios
    Kalantzis, Vasileios
    Ide, Tsuyoshi
    Lozano, Aurelie
    Abe, Naoki
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 7211 - 7219
  • [7] Graph Attention Auto-Encoders
    Salehi, Amin
    Davulcu, Hasan
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 989 - 996
  • [8] Conservativeness of Untied Auto-Encoders
    Im, Daniel Jiwoong
    Belghazi, Mohamed Ishmael
    Memisevic, Roland
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1694 - 1700
  • [9] Learning to Communicate: Channel Auto-encoders, Domain Specific Regularizers, and Attention
    O'Shea, Timothy J.
    Karra, Kiran
    Clancy, T. Charles
    2016 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2016, : 223 - 228
  • [10] Towards Asymmetric Auto-Encoders for the IoBNT
    Angerbauer, Stefan
    Khanzadeh, Roya
    Enzenhofer, Franz
    Springer, Andreas
    Haselmayr, Werner
    PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON NANOSCALE COMPUTING AND COMMUNICATION, NANOCOM 2023, 2023, : 166 - 167