ON CYCLOTOMIC MATRICES INVOLVING GAUSS SUMS OVER FINITE FIELDS

被引:1
作者
Wu, Hai-liang [1 ]
Li, Jie [1 ]
Wang, Li-yuan [2 ]
Yip, Chi hoi [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Peoples R China
[2] Nanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Peoples R China
[3] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
Gauss sums; finite fields; cyclotomic matrices; determinants; DETERMINANTS;
D O I
10.1090/proc/17168
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inspired by the works of L. Carlitz [Acta Arith. 5 (1959), pp. 293- 308] and Z.-W. Sun [Finite Fields Appl. 56 (2019), pp. 285-307] on cyclotomic matrices, in this paper, we investigate certain cyclotomic matrices involving Gauss sums over finite fields, which can be viewed as finite field analogues of certain matrices related to the Gamma function. For example, let q = pn be an odd prime power with p prime and n is an element of Z+. Let zeta p = e2 pi i/p and let chi be a generator of the group of all multiplicative characters of the finite field Fq. For the Gauss sum we prove that where E Gq(chi r) = x is an element of Fq chi r (x)zeta TrFq/Fp (x) p , det [Gq(chi 2i+2j))0 <= i,j <=(q-3)/2 = (-1)alpha alpha n = (q -1)q-1 2 pn-1-1 n 2 2 , 2 Gamma 1 if n equivalent to 1 (mod 2), (p2 + 7)/8 if
引用
收藏
页码:1411 / 1424
页数:14
相关论文
共 13 条
[1]  
ANDREWS G. E., 1999, Encyclopedia of Mathematics and its Applications, V71, DOI DOI 10.1017/CBO9781107325937
[2]  
Berndt B.C., 1998, CANADIAN MATH SOC SE
[3]  
Carlitz L., 1959, ACTA ARITH, V5, P293, DOI DOI 10.4064/AA-5-3-293-308
[4]   Determinants of Legendre symbol matrices [J].
Chapman, R .
ACTA ARITHMETICA, 2004, 115 (03) :231-244
[5]  
Cohen H., 2007, Graduate Texts in Mathematics, V239
[6]   Hypergeometric Functions Over Finite Fields [J].
Fuselier, Jenny ;
Long, Ling ;
Ramakrishna, Ravi ;
Swisher, Holly ;
Tu, Fang-Ting .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 280 (1382) :1-+
[7]   Proof of three conjectures on determinants related to quadratic residues [J].
Grinberg, Darij ;
Sun, Zhi-Wei ;
Zhao, Lilu .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19) :3734-3746
[8]   On some determinants involving Jacobi symbols [J].
Krachun, Dmitry ;
Petrov, Fedor ;
Sun, Zhi-Wei ;
Vsemirnov, Maxim .
FINITE FIELDS AND THEIR APPLICATIONS, 2020, 64
[9]  
Lerch M., 1896, Bull. Intern. de l'Acad. Francois Joseph, V3, P34
[10]   Calculation of some determinants using the s-shifted factorial [J].
Normand, JM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (22) :5737-5762