SOME VARIABLE EXPONENT BOUNDEDNESS AND COMMUTATORS ESTIMATES FOR FRACTIONAL ROUGH HARDY OPERATORS ON CENTRAL MORREY SPACE

被引:3
作者
Asim, Muhammad [1 ]
Gurbuz, Ferit [2 ]
机构
[1] Quaid I Azam Univ 45320, Dept Math, Islamabad 44000, Pakistan
[2] Kirklareli Univ, Dept Math, TR-39100 Kirklareli, Turkiye
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2024年 / 73卷 / 03期
关键词
Rough Hardy-type operators; central Morrey space; fractional integral; variable exponent; LEBESGUE; INTEGRALS; THEOREM;
D O I
10.31801/cfsuasmas.1463245
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the boundedness of the fractional Rough Hardy operator and its adjoint operators on the central Morrey space with a variable exponent. We also establish the same boundedness for their commutators when the symbol functions are on the lambda- central BMO space with a variable exponent.
引用
收藏
页码:802 / 819
页数:18
相关论文
共 37 条
[21]   Fractional integrals on Herz-Morrey spaces with variable exponent [J].
Izuki, Mitsuo .
HIROSHIMA MATHEMATICAL JOURNAL, 2010, 40 (03) :343-355
[22]  
KOVACIK O, 1991, CZECH MATH J, V41, P592
[23]  
Mizuta Y, 2015, HOKKAIDO MATH J, V44, P185
[24]   On the solutions of quasi-linear elliptic partial differential equations [J].
Morrey, Charles B., Jr. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 43 (1-3) :126-166
[25]  
Nakano H., 1951, Topology and linear topological spaces
[26]   Hardy-Littlewood maximal operator on Lp(x)(R) [J].
Nekvinda, A .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (02) :255-265
[27]   Bounds for the Weighted Hardy-Cesaro Operator and its Commutator on Morrey-Herz Type Spaces [J].
Nguyen Minh Chuong ;
Dao Van Duong ;
Ha Duy Hung .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (04) :489-504
[28]  
Orlicz W., 1931, Studia Math., V3, P200
[29]   Weighted Estimates for Commutators of n-Dimensional Rough Hardy Operators [J].
Ren, Zhuanxi ;
Tao, Shuangping .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
[30]  
Ruicka M., 2000, Electrorheogical Fluid: Modeling and Mathematical Theory