SOME VARIABLE EXPONENT BOUNDEDNESS AND COMMUTATORS ESTIMATES FOR FRACTIONAL ROUGH HARDY OPERATORS ON CENTRAL MORREY SPACE

被引:3
作者
Asim, Muhammad [1 ]
Gurbuz, Ferit [2 ]
机构
[1] Quaid I Azam Univ 45320, Dept Math, Islamabad 44000, Pakistan
[2] Kirklareli Univ, Dept Math, TR-39100 Kirklareli, Turkiye
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2024年 / 73卷 / 03期
关键词
Rough Hardy-type operators; central Morrey space; fractional integral; variable exponent; LEBESGUE; INTEGRALS; THEOREM;
D O I
10.31801/cfsuasmas.1463245
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the boundedness of the fractional Rough Hardy operator and its adjoint operators on the central Morrey space with a variable exponent. We also establish the same boundedness for their commutators when the symbol functions are on the lambda- central BMO space with a variable exponent.
引用
收藏
页码:802 / 819
页数:18
相关论文
共 37 条
[1]  
[Anonymous], 2000, Collect. Math.
[2]   Weighted estimates for fractional bilinear Hardy operators on variable exponent Morrey-Herz space [J].
Asim, Muhammad ;
Ayoob, Irshad ;
Hussain, Amjad ;
Mlaiki, Nabil .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01)
[3]   Weighted variable Morrey-Herz estimates for fractional Hardy operators [J].
Asim, Muhammad ;
Hussain, Amjad ;
Sarfraz, Naqash .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
[4]  
Capone C, 2007, REV MAT IBEROAM, V23, P743
[5]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[6]   BEST CONSTANTS FOR 2 NONCONVOLUTION INEQUALITIES [J].
CHRIST, M ;
GRAFAKOS, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (06) :1687-1693
[7]  
Cruz-Uribe D, 2006, ANN ACAD SCI FENN-M, V31, P239
[8]  
Cruz-Uribe D, 2003, ANN ACAD SCI FENN-M, V28, P223
[9]  
Cruz-Uribe D., 2009, Boll. Unione Mat. Ital. (9), V2, P151
[10]   Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces [J].
Diening, L .
BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (08) :657-700