Enhancing peer-to-peer energy trading in Integrated Energy Systems: Gamified engagement strategies and differentiable robust optimization

被引:0
|
作者
Wang, Yanjia [1 ]
Gu, Chenghong [2 ]
Xie, Da [1 ]
Alhazmi, Mohannad [3 ]
Kim, Jinsung [4 ]
Wang, Xitian [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
[2] Univ Bath, Dept Elect Engn, Bath BA2 7AY, England
[3] King Saud Univ, Coll Engn, Elect Engn Dept, POB 2454, Riyadh 11421, Saudi Arabia
[4] Cornell Univ, Syst Engn, Ithaca, NY 14853 USA
关键词
Integrated energy systems; Peer-to-peer energy trading; Distributionally robust optimization; Self-Determination Theory; Gamification; Renewable energy integration; Community energy management; COMMUNITY;
D O I
10.1016/j.egyr.2025.02.034
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The transition to low-carbon energy systems requires innovative solutions to address renewable energy variability, demand-side uncertainty, and user engagement. Integrated Energy Systems (IES) link electricity, gas, and heat to improve grid flexibility and renewable integration. This paper presents a novel framework for optimizing community energy management in IES, incorporating behavioral insights, advanced optimization, and gamification. Using Self-Determination Theory (SDT) to model user motivations, the framework integrates a differentiable Distributionally Robust Optimization (DRO) layer for uncertainty handling in energy forecasting. Gamification strategies incentivize user participation, aligning individual behavior with system goals. A multi-objective model minimizes costs, enhances flexibility, and promotes sustainability. A case study demonstrates that the framework reduces system costs approximately by 15%, cuts carbon emissions nearly by 20%, and increases user engagement scores roughly by 25% compared to conventional strategies. This work contributes: (1) integrating SDT and DRO for energy management, (2) a DRO layer for robust machine learning, (3) a multi-objective optimization framework, and (4) gamification strategies to enhance user participation. The framework bridges technical and behavioral approaches, offering actionable insights for resilient energy systems.
引用
收藏
页码:3225 / 3236
页数:12
相关论文
共 50 条
  • [1] Dynamic Modeling and Optimization of Energy Storage in Peer-to-Peer Energy Trading Systems
    Xie, Pengcheng
    Li, Chunzhong
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2025, 27 (02):
  • [2] Robust optimization and pricing of Peer-to-Peer energy trading considering battery storage
    Khodoomi, Mohammad
    Sahebi, Hadi
    COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 179
  • [3] Blockchain-Based Fully Peer-to-Peer Energy Trading Strategies for Residential Energy Systems
    AlSkaif, Tarek
    Crespo-Vazquez, Jose L.
    Sekuloski, Milos
    van Leeuwen, Gijs
    Catalao, Joao P. S.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (01) : 231 - 241
  • [4] Peer-to-Peer energy trading in a Microgrid
    Zhang, Chenghua
    Wu, Jianzhong
    Zhou, Yue
    Cheng, Meng
    Long, Chao
    APPLIED ENERGY, 2018, 220 : 1 - 12
  • [5] Asymmetric Nash bargaining model for operation optimization of multi-integrated energy systems considering peer-to-peer energy trading
    Yang, Meng
    Liu, Yisheng
    Kobashi, Takuro
    SUSTAINABLE CITIES AND SOCIETY, 2024, 114
  • [6] Peer-to-peer Energy Trading for Smart Energy Communities
    Denysiuk, Roman
    Lilliu, Fabio
    Recupero, Diego Reforgiato
    Vinyals, Meritxell
    ICAART: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1, 2020, : 40 - 49
  • [7] A Robust Decentralized Peer-to-Peer Energy Trading in Community of Flexible Microgrids
    Saatloo, Amin Mansour
    Mirzaei, Mohammad Amin
    Mohammadi-Ivatloo, Behnam
    IEEE SYSTEMS JOURNAL, 2023, 17 (01): : 640 - 651
  • [8] Peer-to-Peer Energy Trading in a Community Microgrid
    Long, Chao
    Wu, Jianzhong
    Zhang, Chenghua
    Thomas, Lee
    Cheng, Meng
    Jenkins, Nick
    2017 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2017,
  • [9] Incentivizing Peer-to-Peer Energy Trading in Microgrids
    Noori, Amir
    Tavassoli, Babak
    Fereidunian, Alireza
    2021 29TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2021, : 323 - 328
  • [10] Optimization Methods to Improve Efficiency and Fairness in Peer-to-Peer Energy Trading
    Kusatake, Eiichi
    Shinomiya, Norihiko
    2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 959 - 962