Machine Learning and Deep Learning for Loan Prediction in Banking: Exploring Ensemble Methods and Data Balancing

被引:0
|
作者
Sayed, Eslam Hussein [1 ,2 ]
Alabrah, Amerah [3 ]
Rahouma, Kamel Hussein [4 ]
Zohaib, Muhammad [5 ]
Badry, Rasha M. [1 ]
机构
[1] Fayoum Univ, Fac Comp & Informat, Informat Syst Dept, Faiyum, Egypt
[2] Nahda Univ, Fac Comp Sci, Informat Syst Dept, Bani Suwayf 62764, Egypt
[3] King Saud Univ, Coll Comp & Informat Sci, Dept Informat Syst, Riyadh 11543, Saudi Arabia
[4] Minia Univ, Fac Engn, Elect Engn Dept, Al Minya, Egypt
[5] Lappeenranta Lahti Univ Technol, Software Engn Dept, Informat Syst Dept, Lappeenranta 53851, Finland
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Accuracy; Random forests; Predictive models; Classification algorithms; Prediction algorithms; Machine learning algorithms; Logistic regression; Support vector machines; Ensemble learning; Deep learning; Customer loan prediction; artificial intelligence; data preprocessing; model optimization; machine learning; deep learning; classification models; CLASSIFICATION;
D O I
10.1109/ACCESS.2024.3509774
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The prediction of loan defaults is crucial for banks and financial institutions due to its impact on earnings, and it also plays a significant role in shaping credit scores. This task is a challenging one, and as the demand for loans increases, so does the number of applications. Traditional methods of checking eligibility are time-consuming and laborious, and they may not always accurately identify suitable loan recipients. As a result, some applicants may default on their loans, causing financial losses for banks. Artificial Intelligence, using Machine Learning and Deep Learning techniques, can provide a more efficient solution. These techniques can use various classification algorithms to predict which applicants will likely be eligible for loans. This study uses five Machine Learning classification algorithms (Gaussian Naive Bayes, AdaBoost, Gradient Boosting, K Neighbors Classifier, Decision Trees, Random Forest, and Logistic Regression) and eight Deep Learning algorithms (MLP, CNN, LSTM, Transformer, GRU, Autoencoder, ResNet, and DenseNet). The use of Ensemble Methods and SMOTE with SMOTE-TOMEK Techniques also has a positive impact on the results. Four metrics are used to evaluate the effectiveness of these algorithms: accuracy, precision, recall, and F1-measure. The study found that DenseNet and ResNet were the most accurate predictive models. These findings highlight the potential of predictive modeling in identifying credit disapproval among vulnerable consumers in a sea of loan applications.
引用
收藏
页码:193997 / 194019
页数:23
相关论文
共 50 条
  • [41] In silico prediction of chemical-induced hematotoxicity with machine learning and deep learning methods
    Hua, Yuqing
    Shi, Yinping
    Cui, Xueyan
    Li, Xiao
    MOLECULAR DIVERSITY, 2021, 25 (03) : 1585 - 1596
  • [42] Stroke Prediction Using Deep Learning and Transfer Learning Approaches
    Shih, Dong-Her
    Wu, Yi-Huei
    Wu, Ting-Wei
    Chu, Huei-Ying
    Shih, Ming-Hung
    IEEE ACCESS, 2024, 12 : 130091 - 130104
  • [43] Hospital Length of Stay Prediction with Ensemble Methods in Machine Learning
    Zheng, Ling
    Wang, Jiacun
    Sheriff, Alex
    Chen, Xuemin
    2021 INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL SOCIAL INTELLIGENCE (ICCSI), 2021,
  • [44] A Review on Recent Progress in Machine Learning and Deep Learning Methods for Cancer Classification on Gene Expression Data
    Mazlan, Aina Umairah
    Sahabudin, Noor Azida
    Remli, Muhammad Akmal
    Ismail, Nor Syahidatul Nadiah
    Mohamad, Mohd Saberi
    Nies, Hui Wen
    Abd Warif, Nor Bakiah
    PROCESSES, 2021, 9 (08)
  • [45] Deep Learning Techniques in the Cancer-Related Medical Domain: A Transfer Deep Learning Ensemble Model for Lung Cancer Prediction
    Jassim, Omar Abdullatif
    Abed, Mohammed Jawad
    Saied, Zenah Hadi
    BAGHDAD SCIENCE JOURNAL, 2024, 21 (03) : 1101 - 1118
  • [46] Machine Learning Ensemble Methods for Optical Network Traffic Prediction
    Szostak, Daniel
    14TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN SECURITY FOR INFORMATION SYSTEMS AND 12TH INTERNATIONAL CONFERENCE ON EUROPEAN TRANSNATIONAL EDUCATIONAL (CISIS 2021 AND ICEUTE 2021), 2022, 1400 : 105 - 115
  • [47] Ensemble modeling with machine learning and deep learning to provide interpretable generalized rules for classifying CNS drugs with high prediction power
    Yu, Tzu-Hui
    Su, Bo-Han
    Battalora, Leo Chander
    Liu, Sin
    Tseng, Yufeng Jane
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [48] Deep Learning Versus Traditional Machine Learning Methods for Aggregated Energy Demand Prediction
    Paterakis, Nikolaos G.
    Mocanu, Elena
    Gibescu, Madeleine
    Stappers, Bart
    van Alst, Walter
    2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,
  • [49] An Ensemble-Based Machine Learning Model for Forecasting Network Traffic in VANET
    Amiri, Parvin Ahmadi Doval
    Pierre, Samuel
    IEEE ACCESS, 2023, 11 : 22855 - 22870
  • [50] Portfolio optimization with return prediction using deep learning and machine learning
    Ma, Yilin
    Han, Ruizhu
    Wang, Weizhong
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 165