Machine Learning and Deep Learning for Loan Prediction in Banking: Exploring Ensemble Methods and Data Balancing

被引:0
|
作者
Sayed, Eslam Hussein [1 ,2 ]
Alabrah, Amerah [3 ]
Rahouma, Kamel Hussein [4 ]
Zohaib, Muhammad [5 ]
Badry, Rasha M. [1 ]
机构
[1] Fayoum Univ, Fac Comp & Informat, Informat Syst Dept, Faiyum, Egypt
[2] Nahda Univ, Fac Comp Sci, Informat Syst Dept, Bani Suwayf 62764, Egypt
[3] King Saud Univ, Coll Comp & Informat Sci, Dept Informat Syst, Riyadh 11543, Saudi Arabia
[4] Minia Univ, Fac Engn, Elect Engn Dept, Al Minya, Egypt
[5] Lappeenranta Lahti Univ Technol, Software Engn Dept, Informat Syst Dept, Lappeenranta 53851, Finland
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Accuracy; Random forests; Predictive models; Classification algorithms; Prediction algorithms; Machine learning algorithms; Logistic regression; Support vector machines; Ensemble learning; Deep learning; Customer loan prediction; artificial intelligence; data preprocessing; model optimization; machine learning; deep learning; classification models; CLASSIFICATION;
D O I
10.1109/ACCESS.2024.3509774
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The prediction of loan defaults is crucial for banks and financial institutions due to its impact on earnings, and it also plays a significant role in shaping credit scores. This task is a challenging one, and as the demand for loans increases, so does the number of applications. Traditional methods of checking eligibility are time-consuming and laborious, and they may not always accurately identify suitable loan recipients. As a result, some applicants may default on their loans, causing financial losses for banks. Artificial Intelligence, using Machine Learning and Deep Learning techniques, can provide a more efficient solution. These techniques can use various classification algorithms to predict which applicants will likely be eligible for loans. This study uses five Machine Learning classification algorithms (Gaussian Naive Bayes, AdaBoost, Gradient Boosting, K Neighbors Classifier, Decision Trees, Random Forest, and Logistic Regression) and eight Deep Learning algorithms (MLP, CNN, LSTM, Transformer, GRU, Autoencoder, ResNet, and DenseNet). The use of Ensemble Methods and SMOTE with SMOTE-TOMEK Techniques also has a positive impact on the results. Four metrics are used to evaluate the effectiveness of these algorithms: accuracy, precision, recall, and F1-measure. The study found that DenseNet and ResNet were the most accurate predictive models. These findings highlight the potential of predictive modeling in identifying credit disapproval among vulnerable consumers in a sea of loan applications.
引用
收藏
页码:193997 / 194019
页数:23
相关论文
共 50 条
  • [21] Exploring the State of Machine Learning and Deep Learning in Medicine: A Survey of the Italian Research Community
    Bottrighi, Alessio
    Pennisi, Marzio
    INFORMATION, 2023, 14 (09)
  • [22] Predicting Stock Market Trends Using Machine Learning and Deep Learning Algorithms Via Continuous and Binary Data; a Comparative Analysis
    Nabipour, Mojtaba
    Nayyeri, Pooyan
    Jabani, Hamed
    Shahab, S.
    Mosavi, Amir
    IEEE ACCESS, 2020, 8 : 150199 - 150212
  • [23] Crime Prediction Methods Based on Machine Learning: A Survey
    Yin, Junxiang
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 4601 - 4629
  • [24] Machine Learning Methods for Preterm Birth Prediction: A Review
    Wlodarczyk, Tomasz
    Plotka, Szymon
    Szczepanski, Tomasz
    Rokita, Przemyslaw
    Sochacki-Wojcicka, Nicole
    Wojcicki, Jakub
    Lipa, Michal
    Trzcinski, Tomasz
    ELECTRONICS, 2021, 10 (05) : 1 - 24
  • [25] Food security prediction from heterogeneous data combining machine and deep learning methods
    Deleglise, Hugo
    Interdonato, Roberto
    Begue, Agnes
    D'Hotel, Elodie Maitre
    Teisseire, Maguelonne
    Roche, Mathieu
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 190
  • [26] Review of machine learning and deep learning models for toxicity prediction
    Guo, Wenjing
    Liu, Jie
    Dong, Fan
    Song, Meng
    Li, Zoe
    Khan, Md Kamrul Hasan
    Patterson, Tucker A.
    Hong, Huixiao
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2023, 248 (21) : 1952 - 1973
  • [27] EnsDeepDP: An Ensemble Deep Learning Approach for Disease Prediction Through Metagenomics
    Shen, Yang
    Zhu, Jinlin
    Deng, Zhaohong
    Lu, Wenwei
    Wang, Hongchao
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (02) : 986 - 998
  • [28] Balancing Predictive Performance and Interpretability in Machine Learning: A Scoring System and an Empirical Study in Traffic Prediction
    Obster, Fabian
    Ciolacu, Monica I.
    Humpe, Andreas
    IEEE ACCESS, 2024, 12 : 195613 - 195628
  • [29] Skin cancer detection using ensemble of machine learning and deep learning techniques
    Tembhurne, Jitendra V.
    Hebbar, Nachiketa
    Patil, Hemprasad Y.
    Diwan, Tausif
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (18) : 27501 - 27524
  • [30] Epileptic Seizure Detection in EEG Signals Using Machine Learning and Deep Learning Techniques
    Kode, Hepseeba
    Elleithy, Khaled
    Almazaydeh, Laiali
    IEEE ACCESS, 2024, 12 : 80657 - 80668