Machine Learning and Deep Learning for Loan Prediction in Banking: Exploring Ensemble Methods and Data Balancing

被引:0
|
作者
Sayed, Eslam Hussein [1 ,2 ]
Alabrah, Amerah [3 ]
Rahouma, Kamel Hussein [4 ]
Zohaib, Muhammad [5 ]
Badry, Rasha M. [1 ]
机构
[1] Fayoum Univ, Fac Comp & Informat, Informat Syst Dept, Faiyum, Egypt
[2] Nahda Univ, Fac Comp Sci, Informat Syst Dept, Bani Suwayf 62764, Egypt
[3] King Saud Univ, Coll Comp & Informat Sci, Dept Informat Syst, Riyadh 11543, Saudi Arabia
[4] Minia Univ, Fac Engn, Elect Engn Dept, Al Minya, Egypt
[5] Lappeenranta Lahti Univ Technol, Software Engn Dept, Informat Syst Dept, Lappeenranta 53851, Finland
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Accuracy; Random forests; Predictive models; Classification algorithms; Prediction algorithms; Machine learning algorithms; Logistic regression; Support vector machines; Ensemble learning; Deep learning; Customer loan prediction; artificial intelligence; data preprocessing; model optimization; machine learning; deep learning; classification models; CLASSIFICATION;
D O I
10.1109/ACCESS.2024.3509774
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The prediction of loan defaults is crucial for banks and financial institutions due to its impact on earnings, and it also plays a significant role in shaping credit scores. This task is a challenging one, and as the demand for loans increases, so does the number of applications. Traditional methods of checking eligibility are time-consuming and laborious, and they may not always accurately identify suitable loan recipients. As a result, some applicants may default on their loans, causing financial losses for banks. Artificial Intelligence, using Machine Learning and Deep Learning techniques, can provide a more efficient solution. These techniques can use various classification algorithms to predict which applicants will likely be eligible for loans. This study uses five Machine Learning classification algorithms (Gaussian Naive Bayes, AdaBoost, Gradient Boosting, K Neighbors Classifier, Decision Trees, Random Forest, and Logistic Regression) and eight Deep Learning algorithms (MLP, CNN, LSTM, Transformer, GRU, Autoencoder, ResNet, and DenseNet). The use of Ensemble Methods and SMOTE with SMOTE-TOMEK Techniques also has a positive impact on the results. Four metrics are used to evaluate the effectiveness of these algorithms: accuracy, precision, recall, and F1-measure. The study found that DenseNet and ResNet were the most accurate predictive models. These findings highlight the potential of predictive modeling in identifying credit disapproval among vulnerable consumers in a sea of loan applications.
引用
收藏
页码:193997 / 194019
页数:23
相关论文
共 50 条
  • [11] Loan Repayment Prediction Using Logistic Regression Ensemble Learning With Machine Learning Algorithms
    Dinh, Thuan Nguyen
    Thanh, Binh Pham
    2022 9TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE, ISCMI, 2022, : 79 - 85
  • [12] Fatality Prediction for Motor Vehicle Collisions: Mining Big Data Using Deep Learning and Ensemble Methods
    Emu, Mahzabeen
    Kamal, Farjana Bintay
    Choudhury, Salimur
    Rahman, Quazi Abidur
    IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 3 : 199 - 209
  • [13] An Ensemble of Random Forest Gradient Boosting Machine and Deep Learning Methods for Stock Price Prediction
    Shrivastav, Lokesh Kumar
    Kumar, Ravinder
    JOURNAL OF INFORMATION TECHNOLOGY RESEARCH, 2022, 15 (01)
  • [14] A Deep Learning Ensemble With Data Resampling for Credit Card Fraud Detection
    Mienye, Ibomoiye Domor
    Sun, Yanxia
    IEEE ACCESS, 2023, 11 : 30628 - 30638
  • [15] Ensemble Learning Based on Hybrid Deep Learning Model for Heart Disease Early Prediction
    Almulihi, Ahmed
    Saleh, Hager
    Hussien, Ali Mohamed
    Mostafa, Sherif
    El-Sappagh, Shaker
    Alnowaiser, Khaled
    Ali, Abdelmgeid A.
    Refaat Hassan, Moatamad
    DIAGNOSTICS, 2022, 12 (12)
  • [16] Agricultural loan delinquency prediction using machine learning methods
    Chen, Jian
    Katchova, Ani L.
    Zhou, Chenxi
    INTERNATIONAL FOOD AND AGRIBUSINESS MANAGEMENT REVIEW, 2021, 24 (05): : 797 - 812
  • [17] Sufficiency of Ensemble Machine Learning Methods for Phishing Websites Detection
    Wei, Yi
    Sekiya, Yuji
    IEEE ACCESS, 2022, 10 : 124103 - 124113
  • [18] Performance Evaluation of Deep, Shallow and Ensemble Machine Learning Methods for the Automated Classification of Alzheimer's Disease
    Shaffi, Noushath
    Subramanian, Karthikeyan
    Vimbi, Viswan
    Hajamohideen, Faizal
    Abdesselam, Abdelhamid
    Mahmud, Mufti
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2024, 34 (07)
  • [19] Monthly streamflow prediction and performance comparison of machine learning and deep learning methods
    Ayana, Omer
    Kanbak, Deniz Furkan
    Keles, Muemine Kaya
    Turhan, Evren
    ACTA GEOPHYSICA, 2023, 71 (06) : 2905 - 2922
  • [20] Monthly streamflow prediction and performance comparison of machine learning and deep learning methods
    Ömer Ayana
    Deniz Furkan Kanbak
    Mümine Kaya Keleş
    Evren Turhan
    Acta Geophysica, 2023, 71 : 2905 - 2922