Deep Causal Disentanglement Network With Domain Generalization for Cross-Machine Bearing Fault Diagnosis

被引:0
|
作者
Guo, Chaochao [1 ]
Sun, Youchao [1 ]
Yu, Rourou [1 ]
Ren, Xinxin [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Civil Aviat, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Feature extraction; Data models; Data mining; Adaptation models; Convolutional neural networks; Training; Correlation; Estimation; Accuracy; Causal disentanglement; causal learning; deep learning; fault diagnosis; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1109/TIM.2025.3545703
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Domain generalization-based fault diagnosis (DGFDs) has gained considerable attention in bearing fault diagnosis due to its ability to extract feature-invariant information from diverse source domains, without requiring direct access to target domain data. However, many existing DGFD approaches primarily rely on statistical models to capture the relationship between time-series data and labels. This often leads to the learning of entangled features, as these models lack prior knowledge to differentiate between task-relevant and task-irrelevant information. To address this limitation, this article introduces the deep causal disentanglement network (DCDN), a novel approach tailored for cross-machine bearing fault diagnosis. In this framework, fault data collected from multiple source domains is decomposed into causal factors related to fault representation and non-causal factors associated with domain-specific information, using a structural causal model (SCM). This process effectively reconstructs the data generation pathway. By optimizing causal aggregation loss and maximizing information entropy loss, DCDN can distinguish between causal and non-causal features from both direct and indirect perspectives. Furthermore, a contrastive estimation loss is minimized to ensure that the extracted causal features retain most of the essential information from the original dataset. Additionally, a redundancy reduction loss is employed to minimize correlations among the dimensions of the causal vector, further reducing the entanglement between causal and non-causal factors. The effectiveness and superiority of the proposed model are demonstrated across five cross-machine bearing fault datasets. Experimental results show that, compared to other state-of-the-art (SOAT) methods, DCDN achieves superior performance in both estimation accuracy and robustness.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Adaptive Class Center Generalization Network: A Sparse Domain-Regressive Framework for Bearing Fault Diagnosis Under Unknown Working Conditions
    Wang, Bin
    Wen, Long
    Li, Xinyu
    Gao, Liang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [32] Exploring Informative and Highly-Transferable Features for Cross-Machine Fault Diagnosis by ConvFormer-Based Biconditional Domain Adaptation Method
    Zheng, Xiaorong
    Nie, Jiahao
    He, Zhiwei
    Gao, Mingyu
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025,
  • [33] Domain Adversarial Transfer Network for Cross-Domain Fault Diagnosis of Rotary Machinery
    Chen, Zhuyun
    He, Guolin
    Li, Jipu
    Liao, Yixiao
    Gryllias, Konstantinos
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (11) : 8702 - 8712
  • [34] Adversarial Domain-Invariant Generalization: A Generic Domain-Regressive Framework for Bearing Fault Diagnosis Under Unseen Conditions
    Chen, Liang
    Li, Qi
    Shen, Changqing
    Zhu, Jun
    Wang, Dong
    Xia, Min
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (03) : 1790 - 1800
  • [35] Multirepresentation Dynamic Adaptive Network for Cross-Domain Rolling Bearing Fault Diagnosis in Complex Scenarios
    Zeng, Yi
    Sun, Bowen
    Xu, Renyi
    Qi, Guopeng
    Wang, Feiyang
    Zhang, Zhengzhuang
    Wu, Kelin
    Wu, Dazhuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [36] Source-Free Progressive Domain Adaptation Network for Universal Cross-Domain Fault Diagnosis of Industrial Equipment
    Li, Jipu
    Yue, Ke
    Wu, Zhaoqian
    Jiang, Fei
    Zhong, Zhi
    Li, Weihua
    Zhang, Shaohui
    IEEE SENSORS JOURNAL, 2025, 25 (05) : 8067 - 8078
  • [37] Domain Transferability-Based Deep Domain Generalization Method Towards Actual Fault Diagnosis Scenarios
    Shi, Yaowei
    Deng, Aidong
    Deng, Minqiang
    Li, Jing
    Xu, Meng
    Zhang, Shun
    Ding, Xue
    Xu, Shuo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (06) : 7355 - 7366
  • [38] Dual disentanglement domain generalization method for rotating Machinery fault diagnosis
    Zhang, Guowei
    Kong, Xianguang
    Ma, Hongbo
    Wang, Qibin
    Du, Jingli
    Wang, Jinrui
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 228
  • [39] Metric-Based Meta-Learning Relation Network for Cross-Domain Few-Shot Bearing Fault Diagnosis
    Gao, Wei
    Xu, Zhiqiang
    Akoudad, Youssef
    IEEE SENSORS JOURNAL, 2025, 25 (08) : 13632 - 13647
  • [40] Optimal Transport-Based Deep Domain Adaptation Approach for Fault Diagnosis of Rotating Machine
    Liu, Zhao-Hua
    Jiang, Lin-Bo
    Wei, Hua-Liang
    Chen, Lei
    Li, Xiao-Hua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71 : 13 - 13