Local and global structure-aware contrastive framework for entity alignment

被引:0
作者
Wang, Cunda
Wang, Weihua [1 ]
Liang, Qiuyu
Gao, Guanglai
机构
[1] Inner Mongolia Univ, Coll Comp Sci, Hohhot 010000, Inner Mongolia, Peoples R China
基金
中国国家自然科学基金;
关键词
Entity alignment; Knowledge graph; Graph neural networks; Graph augmentation; Gating mechanism; LARGE-SCALE; KNOWLEDGE;
D O I
10.1016/j.neucom.2025.129445
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Entity alignment (EA) seeks to identify equivalent real-world entities across different knowledge graphs. Recently, integrating graph neural networks (GNNs) with graph augmentation techniques to aggregate local structural information of entities has been proven effective for EA. However, stacking multiple GNN layers to capture higher-order neighbors often leads to oversmoothing of entity embeddings and the introduction of noise from irrelevant neighbors. In this paper, we propose a novel approach, Local and Global Structure- Aware Contrastive Framework (LGEA), to effectively learn the mutual information between the local and global structures of entities. Specifically, we propose a graph augmentation method using Singular Value Decomposition to capture the global structure. In the Global Structure-Aware Encoder module, we design a Residual Gated Unit to reduce noise and mitigate oversmoothing. LGEA incorporates contrastive learning to maximize the consistency between local and global embeddings. Additionally, we introduce a Degree-Aware Relation Encoder to integrate relational semantic information, enriching the entity embeddings. Extensive experiments on established EA benchmarks demonstrate that our method significantly outperforms previous approaches.
引用
收藏
页数:10
相关论文
共 48 条
  • [1] Observations of the Cabibbo-Suppressed decays Λc+ → nπ+ π0, nπ+ π- π+ and the Cabibbo-Favored decay Λc+ → nK- π+ π+*
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Albrecht, M.
    Aliberti, R.
    Amoroso, A.
    An, M. R.
    An, Q.
    Bai, Y.
    Bakina, O.
    Ferroli, R. Baldini
    Balossino, I
    Ban, Y.
    Batozskaya, V
    Becker, D.
    Begzsuren, K.
    Berger, N.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bianco, E.
    Bloms, J.
    Bortone, A.
    Boyko, I
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, W. L.
    Che, G. R.
    Chelkov, G.
    Chen, C.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Z. J.
    Cheng, W. S.
    Choi, S. K.
    [J]. CHINESE PHYSICS C, 2023, 47 (02)
  • [2] Bordes Antoine, 2013, Proceedings of the 26th International Conference on Neural Information Processing Systems, V26, P2787
  • [3] Cai X., 2023, 11 INT C LEARN REPR
  • [4] Chen E., 2023, FINDINGS ASS COMPUTA, P8683
  • [5] Chen MH, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1511
  • [6] MEAformer: Multi-modal Entity Alignment Transformer for Meta Modality Hybrid
    Chen, Zhuo
    Chen, Jiaoyan
    Zhang, Wen
    Guo, Lingbing
    Fang, Yin
    Huang, Yufeng
    Zhang, Yichi
    Geng, Yuxia
    Pan, Jeff Z.
    Song, Wenting
    Chen, Huajun
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3317 - 3327
  • [7] Cohen W.W., 2002, P 8 ACM SIGKDD INT C, P475
  • [8] Graph Convolutional Networks With Adaptive Neighborhood Awareness
    Guang, Mingjian
    Yan, Chungang
    Xu, Yuhua
    Wang, Junli
    Jiang, Changjun
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (11) : 7392 - 7404
  • [9] Guo LB, 2019, PR MACH LEARN RES, V97
  • [10] When owl:sameAs Isn't the Same: An Analysis of Identity in Linked Data
    Halpin, Harry
    Hayes, Patrick J.
    McCusker, James P.
    McGuinness, Deborah L.
    Thompson, Henry S.
    [J]. SEMANTIC WEB-ISWC 2010, PT I, 2010, 6496 : 305 - +