Humic Acid Alleviates Low-Temperature Stress by Regulating Nitrogen Metabolism and Proline Synthesis in Melon (Cucumis melo L.) Seedlings

被引:0
|
作者
Zhu, Libao [1 ]
Liu, Haihe [1 ]
Zhang, Yanping [1 ]
Cao, Yanxia [1 ]
Hu, Yiwen [2 ]
Wang, Yalun [2 ]
Zheng, Haiqiang [1 ]
Liu, Mengze [1 ]
机构
[1] Hebei Agr Univ, Coll Hort, Baoding 071001, Peoples R China
[2] Baoding Agr Characterist Ind Dev Ctr, Baoding 071001, Peoples R China
关键词
humic acid; low-temperature stress; melon; nitrogen metabolism; proline synthesis; NITRATE; PHOTOSYNTHESIS; ACCUMULATION; CALCIUM; GROWTH; ROOTS;
D O I
10.3390/horticulturae11010016
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Melon is a thermophilic crop that is extremely sensitive to temperature changes. Humic acid (HA) is an eco-friendly biostimulant that enhances plants against abiotic stresses. However, the effect of HA on the cold tolerance of melon plants under low-temperature scenarios is still unclear. This study aimed to find out the effects of HA treatment on the morphological, physiological, and nitrogen metabolism of melon seedlings under low-temperature stress. HA treatment significantly enhanced plant height, stem diameter, fresh weight, dry weight, chlorophyll content (up to 33.17%), maximum photochemical efficiency (Fv/Fm), root architecture, superoxide dismutase (SOD), and catalase (CAT) activity. HA also promoted the degradation of nitrate nitrogen (NO3--N); the synthesis of ammonium nitrogen (NH4+-N), free amino acids, proline, and soluble protein; and nitrogen metabolism (NR, GS, GOGAT, and GDH, up to 181.83%) and proline-related enzyme activity (P5CS and OAT, up to 81.97%). HA significantly increased the expression of nitrogen metabolism and proline metabolism genes. In summary, HA alleviated the damage caused by low-temperature stress by improving levels of antioxidant enzymes, nitrogen metabolism, and proline synthesis.
引用
收藏
页数:14
相关论文
共 31 条