Precision bounds for quantum phase estimation using two-mode squeezed Gaussian states

被引:0
作者
Zhang, Jian-Dong [1 ]
Li, Chuang [2 ]
Hou, Lili [1 ]
Wang, Shuai [1 ]
机构
[1] Jiangsu Univ Technol, Sch Math & Phys, Changzhou 213001, Peoples R China
[2] Zhejiang Lab, Res Ctr Novel Comp Sensing & Intelligent Proc, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum metrology; Gaussian state; Heisenberg limit; 03.67.-a; 42.50.-p; 42.50.Dv;
D O I
10.1088/1674-1056/ad8dc0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum phase estimation based on Gaussian states plays a crucial role in many application fields. In this paper, we study the precision bound for the scheme using two-mode squeezed Gaussian states. The quantum Fisher information is calculated and its maximization is used to determine the optimal parameters. We find that two single-mode squeezed vacuum states are the optimal Gaussian inputs for a fixed two-mode squeezing process. The corresponding precision bound is sub-Heisenberg-limited and scales as N-1/2. For practical purposes, we consider the effects originating from photon loss. The precision bound can still outperform the shot-noise limit when the lossy rate is below 0.4. Our work may demonstrate a significant and promising step towards practical quantum metrology.
引用
收藏
页数:6
相关论文
共 49 条
  • [41] Gaussian quantum states can be disentangled using symplectic rotations
    de Gosson M.A.
    [J]. Letters in Mathematical Physics, 2021, 111 (3)
  • [42] Quantum-Stokes-parameter description of nonclassical polarimetric measurements using two-polarization-mode Fock states
    Muroo, Kazuyuki
    Takubo, Yoshitaka
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (02) : 925 - 929
  • [43] Ultimate phase estimation in a squeezed-state interferometer using photon counters with a finite number resolution
    Liu, P.
    Jin, G. R.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (40)
  • [44] Parameter estimation using NOON states over a relativistic quantum channel
    Hosler, Dominic
    Kok, Pieter
    [J]. PHYSICAL REVIEW A, 2013, 88 (05):
  • [45] Optimal multiple-phase estimation with multi-mode NOON states against photon loss
    Namkung, Min
    Kim, Dong-Hyun
    Hong, Seongjin
    Kim, Yong-Su
    Lee, Changhyoup
    Lim, Hyang-Tag
    [J]. NEW JOURNAL OF PHYSICS, 2024, 26 (07):
  • [46] Enhancing interferometer phase estimation, sensing sensitivity, and resolution using robust entangled states
    Smith, James F., III
    [J]. OPTICAL ENGINEERING, 2017, 56 (11)
  • [47] Photon statistics, parity measurements, and Heisenberg-limited interferometry: example of the two-mode SU(1,1) ⊗ SU(1,1) coherent states
    Gerry, Christopher C.
    Birrittella, Richard
    Raymond, Andrae
    Carranza, Raul
    [J]. JOURNAL OF MODERN OPTICS, 2011, 58 (17) : 1509 - 1517
  • [48] ON THE PHASE SENSITIVITY OF TWO PATH INTERFEROMETRY USING PATH-SYMMETRIC N-PHOTON STATES
    Hofmann, Holger F.
    [J]. PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF QUANTUM MECHANICS IN THE LIGHT OF NEW TECHNOLOGY, 2009, : 282 - 285
  • [49] Practical Sensitivity Bound for Multiple Phase Estimation with Multi-Mode N00N$N00N$ States
    Hong, Seongjin
    Rehman, Junaid ur
    Kim, Yong-Su
    Cho, Young-Wook
    Lee, Seung-Woo
    Lee, Su-Yong
    Lim, Hyang-Tag
    [J]. LASER & PHOTONICS REVIEWS, 2022, 16 (09)