Precision bounds for quantum phase estimation using two-mode squeezed Gaussian states

被引:0
|
作者
Zhang, Jian-Dong [1 ]
Li, Chuang [2 ]
Hou, Lili [1 ]
Wang, Shuai [1 ]
机构
[1] Jiangsu Univ Technol, Sch Math & Phys, Changzhou 213001, Peoples R China
[2] Zhejiang Lab, Res Ctr Novel Comp Sensing & Intelligent Proc, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum metrology; Gaussian state; Heisenberg limit; 03.67.-a; 42.50.-p; 42.50.Dv;
D O I
10.1088/1674-1056/ad8dc0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum phase estimation based on Gaussian states plays a crucial role in many application fields. In this paper, we study the precision bound for the scheme using two-mode squeezed Gaussian states. The quantum Fisher information is calculated and its maximization is used to determine the optimal parameters. We find that two single-mode squeezed vacuum states are the optimal Gaussian inputs for a fixed two-mode squeezing process. The corresponding precision bound is sub-Heisenberg-limited and scales as N-1/2. For practical purposes, we consider the effects originating from photon loss. The precision bound can still outperform the shot-noise limit when the lossy rate is below 0.4. Our work may demonstrate a significant and promising step towards practical quantum metrology.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Precision bounds for quantum phase estimation using two-mode squeezed Gaussian states
    张建东
    李闯
    侯丽丽
    王帅
    Chinese Physics B, 2025, 34 (01) : 232 - 237
  • [2] Quantum entanglement and nonlocality properties of two-mode Gaussian squeezed states
    Shao-Hua, Xiang
    Bin, Shao
    Ke-Hui, Song
    CHINESE PHYSICS B, 2009, 18 (02) : 418 - 425
  • [3] Quantum entanglement and nonlocality properties of two-mode Gaussian squeezed states
    向少华
    邵彬
    宋克慧
    Chinese Physics B, 2009, 18 (02) : 418 - 425
  • [4] Quantum voting protocol using two-mode squeezed states
    Yi Zhi
    He Guang-Qiang
    Ze Gui-Hua
    ACTA PHYSICA SINICA, 2009, 58 (05) : 3166 - 3172
  • [5] Supersensitivity of Kerr phase estimation with two-mode squeezed vacuum states
    Guo, Yun-Feng
    Zhong, Wei
    Zhou, Lan
    Sheng, Yu-Bo
    PHYSICAL REVIEW A, 2022, 105 (03)
  • [6] Entanglement bounds for a family of two-mode Gaussian states
    Jiang, LZ
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2004, 2 (02) : 273 - 283
  • [7] Solution of the two-mode quantum Rabi model using extended squeezed states
    Duan, Liwei
    He, Shu
    Braak, Daniel
    Chen, Qing-Hu
    EPL, 2015, 112 (03)
  • [8] Quantum repeater using two-mode squeezed states and atomic noiseless amplifiers
    Bjerrum, Anders J. E.
    Brask, Jonatan B.
    Neergaard-Nielsen, Jonas S.
    Andersen, Ulrik L.
    PHYSICAL REVIEW A, 2023, 107 (04)
  • [9] Teleportation of quantum states by means of two-mode squeezed vacuum
    Song, TQ
    ACTA PHYSICA SINICA, 2004, 53 (10) : 3358 - 3362
  • [10] Teleportation of two-mode squeezed states
    Adhikari, Satyabrata
    Majumdar, A. S.
    Nayak, N.
    PHYSICAL REVIEW A, 2008, 77 (01)