Enhancing Lymphoma Diagnosis, Treatment, and Follow-Up Using 18F-FDG PET/CT Imaging: Contribution of Artificial Intelligence and Radiomics Analysis

被引:2
作者
Hasanabadi, Setareh [1 ]
Aghamiri, Seyed Mahmud Reza [1 ]
Abin, Ahmad Ali [2 ]
Abdollahi, Hamid [3 ,4 ]
Arabi, Hossein [5 ]
Zaidi, Habib [5 ,6 ,7 ,8 ]
机构
[1] Shahid Beheshti Univ, Dept Med Radiat Engn, Tehran 1983969411, Iran
[2] Shahid Beheshti Univ, Fac Comp Sci & Engn, Tehran 1983969411, Iran
[3] Univ British Columbia, Dept Radiol, Vancouver, BC V5Z 1M9, Canada
[4] BC Canc Res Inst, Dept Integrat Oncol, Vancouver, BC V5Z 1L3, Canada
[5] Geneva Univ Hosp, Div Nucl Med & Mol Imaging, CH-1211 Geneva, Switzerland
[6] Univ Groningen, Univ Med Ctr Groningen, Dept Nucl Med & Mol Imaging, NL-9700 RB Groningen, Netherlands
[7] Univ Southern Denmark, Dept Nucl Med, DK-500 Odense, Denmark
[8] Obuda Univ, Univ Res & Innovat Ctr, H-1034 Budapest, Hungary
基金
瑞士国家科学基金会;
关键词
lymphoma; F-18-FDG PET/CT; radiomics; genomics; radiogenomics; deep learning; personalized therapy; B-CELL LYMPHOMA; NON-HODGKINS-LYMPHOMA; BASE-LINE; FDG-PET; PROGNOSIS PREDICTION; SEGMENTATION; FEATURES; PROGRESSION;
D O I
10.3390/cancers16203511
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Lymphoma, encompassing a wide spectrum of immune system malignancies, presents significant complexities in its early detection, management, and prognosis assessment since it can mimic post-infectious/inflammatory diseases. The heterogeneous nature of lymphoma makes it challenging to definitively pinpoint valuable biomarkers for predicting tumor biology and selecting the most effective treatment strategies. Although molecular imaging modalities, such as positron emission tomography/computed tomography (PET/CT), specifically F-18-FDG PET/CT, hold significant importance in the diagnosis of lymphoma, prognostication, and assessment of treatment response, they still face significant challenges. Over the past few years, radiomics and artificial intelligence (AI) have surfaced as valuable tools for detecting subtle features within medical images that may not be easily discerned by visual assessment. The rapid expansion of AI and its application in medicine/radiomics is opening up new opportunities in the nuclear medicine field. Radiomics and AI capabilities seem to hold promise across various clinical scenarios related to lymphoma. Nevertheless, the need for more extensive prospective trials is evident to substantiate their reliability and standardize their applications. This review aims to provide a comprehensive perspective on the current literature regarding the application of AI and radiomics applied/extracted on/from F-18-FDG PET/CT in the management of lymphoma patients.
引用
收藏
页数:38
相关论文
共 152 条
  • [31] Volumetric and textural analysis of PET/CT in patients with diffuse large B-cell lymphoma highlights the importance of novel MTVrate feature
    Czibor, Sandor
    Csatlos, Zselyke
    Fabian, Krisztian
    Piroska, Marton
    Gyorke, Tamas
    [J]. NUCLEAR MEDICINE COMMUNICATIONS, 2024, 45 (11) : 931 - 937
  • [32] D'souza Maria M, 2013, Indian J Radiol Imaging, V23, P354, DOI 10.4103/0971-3026.125626
  • [33] Machine learning in the differentiation of follicular lymphoma from diffuse large B-cell lymphoma with radiomic [18F]FDG PET/CT features
    de Jesus, F. Montes
    Yin, Y.
    Mantzorou-Kyriaki, E.
    Kahle, X. U.
    de Haas, R. J.
    Yakar, D.
    Glaudemans, A. W. J. M.
    Noordzij, W.
    Kwee, T. C.
    Nijland, M.
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (05) : 1535 - 1543
  • [34] Tumor fragmentation estimated by volume surface ratio of tumors measured on 18F-FDG PET/CT is an independent prognostic factor of diffuse large B-cell lymphoma
    Decazes, Pierre
    Becker, Stephanie
    Toledano, Mathieu Nessim
    Vera, Pierre
    Desbordes, Paul
    Jardin, Fabrice
    Tilly, Herve
    Gardin, Isabelle
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 (10) : 1672 - 1679
  • [35] A multi-instance tumor subtype classification method for small PET datasets using RA-DL attention module guided deep feature extraction with radiomics features
    Diao Z.
    Jiang H.
    [J]. Computers in Biology and Medicine, 2024, 174
  • [36] Prognostic value of the combination of volume, massiveness and fragmentation parameters measured on baseline FDG pet in high-burden follicular lymphoma
    Draye-Carbonnier, S.
    Camus, V.
    Becker, S.
    Tonnelet, D.
    Leveque, E.
    Zduniak, A.
    Jardin, F.
    Tilly, H.
    Vera, P.
    Decazes, P.
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [37] Blood-circulating EV-miRNAs, serum TARC, and quantitative FDG-PET features in classical Hodgkin lymphoma
    Drees, Esther E. E.
    Driessen, Julia
    Zwezerijnen, Gerben J. C.
    Verkuijlen, Sandra A. W. M.
    Eertink, Jakoba J.
    van Eijndhoven, Monique A. J.
    Groenewegen, Nils J.
    Valles-Marti, Andrea
    de Jong, Daphne
    Boellaard, Ronald
    de Vet, Henrica C. W.
    Pegtel, Dirk M.
    Zijlstra, Josee M.
    [J]. EJHAEM, 2022, 3 (03): : 908 - 912
  • [38] Prognostic model using 18F-FDG PET radiomics predicts progression-free survival in relapsed/refractory Hodgkin lymphoma
    Driessen, Julia
    Zwezerijnen, Gerben J. C.
    Schoeder, Heiko
    Kersten, Marie Jose
    Moskowitz, Alison J.
    Moskowitz, Craig H.
    Eertink, Jakoba J.
    Heymans, Martijn W.
    Boellaard, Ronald
    Zijlstra, Josee M.
    [J]. BLOOD ADVANCES, 2023, 7 (21) : 6732 - 6743
  • [39] The Impact of Semiautomatic Segmentation Methods on Metabolic Tumor Volume, Intensity, and Dissemination Radiomics in 18F-FDG PET Scans of Patients with Classical Hodgkin Lymphoma
    Driessen, Julia
    Zwezerijnen, Gerben J. C.
    Schoder, Heiko
    Drees, Esther E. E.
    Kersten, Marie Jose
    Moskowitz, Alison J.
    Moskowitz, Craig H.
    Eertink, Jakoba J.
    de Vet, Henrica C. W.
    Hoekstra, Otto S.
    Zijlstra, Josee M.
    Boellaard, Ronald
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2022, 63 (09) : 1424 - 1430
  • [40] Usual and unusual pitfalls of 18F-FDG-PET/CT in lymphoma after treatment: a pictorial review
    Dubreuil, Julien
    Salles, Gilles
    Bozzetto, Juliette
    Tordo, Jeremie
    Djaieleb, Loiec
    Berriolo-Riedinger, Alina
    Leenhardt, Julien
    Giammarile, Francesco
    Meignan, Michel
    Skanjeti, Andrea
    [J]. NUCLEAR MEDICINE COMMUNICATIONS, 2017, 38 (07) : 563 - 576