Enhancing Lymphoma Diagnosis, Treatment, and Follow-Up Using 18F-FDG PET/CT Imaging: Contribution of Artificial Intelligence and Radiomics Analysis

被引:2
作者
Hasanabadi, Setareh [1 ]
Aghamiri, Seyed Mahmud Reza [1 ]
Abin, Ahmad Ali [2 ]
Abdollahi, Hamid [3 ,4 ]
Arabi, Hossein [5 ]
Zaidi, Habib [5 ,6 ,7 ,8 ]
机构
[1] Shahid Beheshti Univ, Dept Med Radiat Engn, Tehran 1983969411, Iran
[2] Shahid Beheshti Univ, Fac Comp Sci & Engn, Tehran 1983969411, Iran
[3] Univ British Columbia, Dept Radiol, Vancouver, BC V5Z 1M9, Canada
[4] BC Canc Res Inst, Dept Integrat Oncol, Vancouver, BC V5Z 1L3, Canada
[5] Geneva Univ Hosp, Div Nucl Med & Mol Imaging, CH-1211 Geneva, Switzerland
[6] Univ Groningen, Univ Med Ctr Groningen, Dept Nucl Med & Mol Imaging, NL-9700 RB Groningen, Netherlands
[7] Univ Southern Denmark, Dept Nucl Med, DK-500 Odense, Denmark
[8] Obuda Univ, Univ Res & Innovat Ctr, H-1034 Budapest, Hungary
基金
瑞士国家科学基金会;
关键词
lymphoma; F-18-FDG PET/CT; radiomics; genomics; radiogenomics; deep learning; personalized therapy; B-CELL LYMPHOMA; NON-HODGKINS-LYMPHOMA; BASE-LINE; FDG-PET; PROGNOSIS PREDICTION; SEGMENTATION; FEATURES; PROGRESSION;
D O I
10.3390/cancers16203511
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Lymphoma, encompassing a wide spectrum of immune system malignancies, presents significant complexities in its early detection, management, and prognosis assessment since it can mimic post-infectious/inflammatory diseases. The heterogeneous nature of lymphoma makes it challenging to definitively pinpoint valuable biomarkers for predicting tumor biology and selecting the most effective treatment strategies. Although molecular imaging modalities, such as positron emission tomography/computed tomography (PET/CT), specifically F-18-FDG PET/CT, hold significant importance in the diagnosis of lymphoma, prognostication, and assessment of treatment response, they still face significant challenges. Over the past few years, radiomics and artificial intelligence (AI) have surfaced as valuable tools for detecting subtle features within medical images that may not be easily discerned by visual assessment. The rapid expansion of AI and its application in medicine/radiomics is opening up new opportunities in the nuclear medicine field. Radiomics and AI capabilities seem to hold promise across various clinical scenarios related to lymphoma. Nevertheless, the need for more extensive prospective trials is evident to substantiate their reliability and standardize their applications. This review aims to provide a comprehensive perspective on the current literature regarding the application of AI and radiomics applied/extracted on/from F-18-FDG PET/CT in the management of lymphoma patients.
引用
收藏
页数:38
相关论文
共 152 条
  • [1] Texture analysis of 18F-FDG PET/CT and CECT: Prediction of refractoriness of Hodgkin lymphoma with mediastinal bulk involvement
    Abenavoli, Elisabetta M.
    Linguanti, Flavia
    Anichini, Matilde
    Miele, Vittorio
    Mungai, Francesco
    Palazzo, Marianna
    Nassi, Luca
    Puccini, Benedetta
    Romano, Ilaria
    Sordi, Benedetta
    Sciagra, Roberto
    Simontacchi, Gabriele
    Vannucchi, Alessandro M.
    Berti, Valentina
    [J]. HEMATOLOGICAL ONCOLOGY, 2024, 42 (02)
  • [2] Characterization of Mediastinal Bulky Lymphomas with FDG-PET-Based Radiomics and Machine Learning Techniques
    Abenavoli, Elisabetta Maria
    Barbetti, Matteo
    Linguanti, Flavia
    Mungai, Francesco
    Nassi, Luca
    Puccini, Benedetta
    Romano, Ilaria
    Sordi, Benedetta
    Santi, Raffaella
    Passeri, Alessandro
    Sciagra, Roberto
    Talamonti, Cinzia
    Cistaro, Angelina
    Vannucchi, Alessandro Maria
    Berti, Valentina
    [J]. CANCERS, 2023, 15 (07)
  • [3] Opportunities and limitations of bone marrow biopsy and bone marrow FDG-PET in lymphoma
    Adams, Hugo J. A.
    Nievelstein, Rutger A. J.
    Kwee, Thomas C.
    [J]. BLOOD REVIEWS, 2015, 29 (06) : 417 - 425
  • [4] Diagnostic and prognostic value of baseline FDG PET/CT skeletal textural features in diffuse large B cell lymphoma
    Aide, Nicolas
    Talbot, Marjolaine
    Fruchart, Christophe
    Damaj, Gandhi
    Lasnon, Charline
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 (05) : 699 - 711
  • [5] Personalized brachytherapy dose reconstruction using deep learning
    Akhavanallaf, Azadeh
    Mohammadi, Reza
    Shiri, Isaac
    Salimi, Yazdan
    Arabi, Hossein
    Zaidi, Habib
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 136
  • [6] The role of baseline 2-[18F]-FDG-PET/CT metrics and radiomics features in predicting primary gastric lymphoma diagnosis
    Albano, Domenico
    Calabro, Anna
    Dondi, Francesco
    Bagnasco, Samuele
    Tucci, Alessandra
    Bertagna, Francesco
    [J]. HEMATOLOGICAL ONCOLOGY, 2024, 42 (02)
  • [7] 2-[18F]-FDG PET/CT Semiquantitative and Radiomics Predictive Parameters of Richter's Transformation in CLL Patients
    Albano, Domenico
    Calabro, Anna
    Dondi, Francesco
    Bertagna, Francesco
    [J]. MEDICINA-LITHUANIA, 2024, 60 (02):
  • [8] Multi-level multi-modality (PET and CT) fusion radiomics: prognostic modeling for non-small cell lung carcinoma
    Amini, Mehdi
    Nazari, Mostafa
    Shiri, Isaac
    Hajianfar, Ghasem
    Deevband, Mohammad Reza
    Abdollahi, Hamid
    Arabi, Hossein
    Rahmim, Arman
    Zaidi, Habib
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (20)
  • [9] Deep convolutional neural network for differentiating between sarcoidosis and lymphoma based on [18F]FDG maximum-intensity projection images
    Aoki, Hikaru
    Miyazaki, Yasunari
    Anzai, Tatsuhiko
    Yokoyama, Kota
    Tsuchiya, Junichi
    Shirai, Tsuyoshi
    Shibata, Sho
    Sakakibara, Rie
    Mitsumura, Takahiro
    Honda, Takayuki
    Furusawa, Haruhiko
    Okamoto, Tsukasa
    Tateishi, Tomoya
    Tamaoka, Meiyo
    Yamamoto, Masahide
    Takahashi, Kunihiko
    Tateishi, Ukihide
    Yamaguchi, Tetsuo
    [J]. EUROPEAN RADIOLOGY, 2024, 34 (01) : 374 - 383
  • [10] Recent Advances in Positron Emission Tomography/Magnetic Resonance Imaging Technology
    Arabi, Hossein
    Zaidi, Habib
    [J]. MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2023, 31 (04) : 503 - 515