A Meshless Radial Point Interpolation Method for Solving Fractional Navier-Stokes Equations

被引:2
作者
Dabiri, Arman [1 ]
Moghaddam, Behrouz Parsa [2 ]
Taghizadeh, Elham [3 ]
Galhano, Alexandra [4 ]
机构
[1] Southern Illinois Univ, Dept Mech & Mechatron, Edwardsville, IL 62026 USA
[2] Islamic Azad Univ, Dept Math, Lahijan Branch, Lahijan 4416939515, Iran
[3] Islamic Azad Univ, Dept Math, Cent Tehran Branch, Tehran 1955847781, Iran
[4] Univ Lusofona Porto, Fac Ciencias Nat Engn & Tecnol, Rua Augusto Rosa 24, P-4000098 Porto, Portugal
关键词
fractional calculus; time-fractional incompressible Navier-Stokes equations; radial point interpolation; shape parameters; meshless method; DIFFERENTIAL-EQUATIONS; SCHEME; WEAK;
D O I
10.3390/axioms13100695
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims to develop a meshless radial point interpolation (RPI) method for obtaining the numerical solution of fractional Navier-Stokes equations. The proposed RPI method discretizes differential equations into highly nonlinear algebraic equations, which are subsequently solved using a fixed-point method. Furthermore, a comprehensive analysis regarding the effects of spatial and temporal discretization, polynomial order, and fractional order is conducted. These factors' impacts on the accuracy and efficiency of the solutions are discussed in detail. It can be shown that the meshless RPI method works quite well for solving some benchmark problems accurately.
引用
收藏
页数:16
相关论文
共 43 条
[11]   Coefficient of restitution in fractional viscoelastic compliant impacts using fractional Chebyshev collocation [J].
Dabiri, Arman ;
Butcher, Eric A. ;
Nazari, Morad .
JOURNAL OF SOUND AND VIBRATION, 2017, 388 :230-244
[12]  
Dabiri A, 2016, P AMER CONTR CONF, P2772, DOI 10.1109/ACC.2016.7525338
[13]  
Devendra K., 2015, J. Assoc. Arab. Univ. Basic Appl. Sci, V17, P14, DOI [10.1016/j.jaubas.2014.01.001, DOI 10.1016/J.JAUBAS.2014.01.001]
[14]  
Dunnimit P., 2024, Partial. Differ. Equations Appl. Math, V9, DOI [10.1016/j.padiff.2024.100629, DOI 10.1016/J.PADIFF.2024.100629]
[15]  
Fareed AF., 2022, Int. J. Appl. Comput. Math., V8, P184, DOI [10.1007/s40819-022-01361-x, DOI 10.1007/S40819-022-01361-X]
[16]  
Fefferman C. L., 2006, The millennium prize problems, P57
[17]   Convergence analysis of an implicit fractional-step method for the incompressible Navier-Stokes equations [J].
Feng, Xinlong ;
He, Yinnian ;
Liu, Demin .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (12) :5856-5871
[18]   Solving partial differential equations by collocation using radial basis functions [J].
Franke, C ;
Schaback, R .
APPLIED MATHEMATICS AND COMPUTATION, 1998, 93 (01) :73-82
[19]   Average Process of Fractional Navier-Stokes Equations with Singularly Oscillating Force [J].
Han, Chunjiao ;
Cheng, Yi ;
Ma, Ranzhuo ;
Zhao, Zhenhua .
FRACTAL AND FRACTIONAL, 2022, 6 (05)