A Semantic Compression Framework for Video Surveillance Applications

被引:0
作者
Kama, Mohamed [1 ]
Bahria, Raed [2 ]
Ghazzai, Hakim [3 ]
Sboui, Lokman [1 ]
机构
[1] Ecole Technol Super ETS, Syst Engn Dept, Montreal, PQ, Canada
[2] Ecole Super Privee Ingn & Technol ESPRIT, Tunis, Tunisia
[3] King Abdullah Univ Sci & Technol KAUST, Thuwal, Saudi Arabia
来源
2024 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE 2024 | 2024年
关键词
Video surveillance; video compression; semantic communication; object detection; large language models;
D O I
10.1109/CCECE59415.2024.10667302
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We develop a semantic compression framework for video surveillance in low-bandwidth communication. The framework aims to extract abstract representations of input videos, enabling the monitoring task while transmitting minimal amounts of data. We propose different levels of abstraction, including captions describing the scene, detection of objects of interest, and sample frames of relevant actions. The framework combines state-of-the-art object detection and multimodal large language models to generate informative and concise representations of the monitored areas, providing efficient data compression rates. We evaluate the framework by accounting for compression rate, quality of information, and delay.
引用
收藏
页码:133 / 134
页数:2
相关论文
共 5 条
[1]  
Caffagni D, 2024, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, P13590
[2]  
Gündüz D, 2023, IEEE J SEL AREA COMM, V41, P5, DOI 10.1109/JSAC.2022.3223408
[3]  
Jocher G., 2023, YOLO by ultralytics
[4]  
Qin Z., 2022, ABS220101389 CORR
[5]   End-To-End Compression for Surveillance Video With Unsupervised Foreground-Background Separation [J].
Zhao, Yu ;
Luo, Dengyan ;
Wang, Fuchun ;
Gao, Han ;
Ye, Mao ;
Zhu, Ce .
IEEE TRANSACTIONS ON BROADCASTING, 2023, 69 (04) :966-978