A medius error analysis for the conforming discontinuous Galerkin finite element methods

被引:0
|
作者
Zeng, Yuping [1 ]
Zhang, Shangyou [2 ]
机构
[1] Jiaying Univ, Sch Math, Meizhou 514015, Peoples R China
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
中国国家自然科学基金;
关键词
conforming discontinuous Galerkin method; elliptic problems; second and fourth order; minimal regularity; a medius error estimate; PENALTY METHOD; A-PRIORI; FAMILY;
D O I
10.1515/jnma-2024-0005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive an improved error estimate of a conforming discontinuous Galerkin (CDG) method for both second and fourth order elliptic problems, assuming only minimal regularity on the exact solutions. The result we established is called a medius error estimate since it relies on both a priori and a posteriori analysis. Compared with the standard interior penalty discontinuous Galerkin (IPDG) method, when choosing the standard DG norm, an additional term & Vert;del u - del w v h & Vert;0 is incorporated in the CDG formulation for second order elliptic equation, while for the case of fourth order equation, this term becomes & Vert; Delta u - Delta w v h & Vert; 0 ${\Vert}{\Delta}\mathbb{u}-{{\Delta}}_{w}{\mathbb{v}}_{h}{{\Vert}}_{0}$ . These terms disappear if we directly analyze the nonstandard error formulations & Vert;del u - del w u h & Vert;0 and & Vert; Delta u - Delta w u h & Vert; 0 ${\Vert}{\Delta}\mathbb{u}-{{\Delta}}_{w}{\mathbb{u}}_{h}{{\Vert}}_{0}$ . Extensive numerical results are also carried out to validate our theoretical findings.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR NUMERICAL SIMULATIONS OF THERMOELASTICITY
    Hao, Zeng-rong
    Gu, Chun-wei
    Song, Yin
    JOURNAL OF THERMAL STRESSES, 2015, 38 (09) : 983 - 1004
  • [32] AUTOMATIC SYMBOLIC COMPUTATION FOR DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS
    Houston, Paul
    Sime, Nathan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03): : C327 - C357
  • [33] Discontinuous Galerkin Finite Element Time Domain Method for Analysis of Ferrite Circulator with Non-conforming Meshes
    Li, M.
    Ye, X. D.
    Xu, F.
    Luo, N. M.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2018, 33 (12): : 1346 - 1351
  • [34] Port-Hamiltonian discontinuous Galerkin finite element methods
    Kumar, Nishant
    van der Vegt, J. J. W.
    Zwart, H. J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [35] HpGEM - A software framework for discontinuous galerkin finite element methods
    Pesch, Lars
    Bell, Alexander
    Sollie, Henk
    Ambati, Vijaya R.
    Bokhove, Onno
    Van der Vegt, Jaap J. W.
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (04):
  • [36] A locking-free conforming discontinuous Galerkin finite element method for linear elasticity problems
    Huo, Fuchang
    Mo, Weilong
    Zhang, Yulin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 465
  • [37] A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems
    Liang Wang
    Chunguang Xiong
    Huibin Wu
    Fusheng Luo
    Advances in Computational Mathematics, 2019, 45 : 2623 - 2646
  • [38] A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems
    Wang, Liang
    Xiong, Chunguang
    Wu, Huibin
    Luo, Fusheng
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (5-6) : 2623 - 2646
  • [39] A priori and a posteriori error analysis for the mixed discontinuous Galerkin finite element approximations of the biharmonic problems
    Xiong, Chunguang
    Becker, Roland
    Luo, Fusheng
    Ma, Xiuling
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (01) : 318 - 353
  • [40] A ROBUST A POSTERIORI ERROR ESTIMATOR FOR DIVERGENCE-CONFORMING DISCONTINUOUS GALERKIN METHODS FOR THE OSEEN EQUATION
    Khan, Arbaz
    Kanschat, Guido
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 492 - 518