A medius error analysis for the conforming discontinuous Galerkin finite element methods

被引:0
作者
Zeng, Yuping [1 ]
Zhang, Shangyou [2 ]
机构
[1] Jiaying Univ, Sch Math, Meizhou 514015, Peoples R China
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
中国国家自然科学基金;
关键词
conforming discontinuous Galerkin method; elliptic problems; second and fourth order; minimal regularity; a medius error estimate; PENALTY METHOD; A-PRIORI; FAMILY;
D O I
10.1515/jnma-2024-0005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive an improved error estimate of a conforming discontinuous Galerkin (CDG) method for both second and fourth order elliptic problems, assuming only minimal regularity on the exact solutions. The result we established is called a medius error estimate since it relies on both a priori and a posteriori analysis. Compared with the standard interior penalty discontinuous Galerkin (IPDG) method, when choosing the standard DG norm, an additional term & Vert;del u - del w v h & Vert;0 is incorporated in the CDG formulation for second order elliptic equation, while for the case of fourth order equation, this term becomes & Vert; Delta u - Delta w v h & Vert; 0 ${\Vert}{\Delta}\mathbb{u}-{{\Delta}}_{w}{\mathbb{v}}_{h}{{\Vert}}_{0}$ . These terms disappear if we directly analyze the nonstandard error formulations & Vert;del u - del w u h & Vert;0 and & Vert; Delta u - Delta w u h & Vert; 0 ${\Vert}{\Delta}\mathbb{u}-{{\Delta}}_{w}{\mathbb{u}}_{h}{{\Vert}}_{0}$ . Extensive numerical results are also carried out to validate our theoretical findings.
引用
收藏
页数:21
相关论文
共 36 条
  • [1] Brenner S.C., Scott L.R., The Mathematical Theory of Finite Element Methods, (2008)
  • [2] Shi Z., Wang M., Finite Element Methods, (2010)
  • [3] Brenner S.C., Neilan M.A., A C<sup>0</sup> interior penalty method for a fourth order elliptic singular perturbation problem, SIAM J. Numer. Anal., 49, 2, pp. 869-892, (2011)
  • [4] Carstensen C., Dond A.K., Nataraj N., Pani A.K., Three first-order finite volume element methods for Stokes equations under minimal regularity assumptions, SIAM J. Numer. Anal., 56, 4, pp. 2648-2671, (2018)
  • [5] Carstensen C., Nataraj N., A priori and a posteriori error analysis of the Crouzeix−Raviart and Morley FEM with original and modified right-hand sides, Comput. Methods Appl. Math., 21, 2, pp. 289-315, (2021)
  • [6] Carstensen C., Schedensack M., Medius analysis and comparison results for first-order finite element methods in linear elasticity, IMA J. Numer. Anal., 35, 4, pp. 1591-1621, (2015)
  • [7] Ern A., Guermond J.L., Quasi-optimal nonconforming approximation of elliptic PDEs with contrasted coefficients and H<sup>1</sup>+<sup>r</sup>, r > 0, regularity, Found Comput. Math., 22, pp. 1273-1308, (2022)
  • [8] Gudi T., A new error analysis for discontinuous finite element methods for linear elliptic problems, Math. Comput., 79, 272, pp. 2169-2189, (2010)
  • [9] Hu J., Ma R., Shi Z., A new a priori error estimate of nonconforming finite element methods, Sci. China Math., 57, pp. 887-902, (2014)
  • [10] Huang J., Yu Y., A medius error analysis for nonconforming virtual element methods for Poisson and biharmonic equations, J. Comput. Appl. Math., 386, (2021)