Unsupervised Contrastive Hashing With Autoencoder Semantic Similarity for Cross-Modal Retrieval in Remote Sensing

被引:0
|
作者
Liu, Na [1 ]
Wu, Guodong [2 ]
Huang, Yonggui [3 ]
Chen, Xi [4 ]
Li, Qingdu [1 ]
Wan, Lihong [2 ]
机构
[1] Univ Shanghai Sci & Technol, Shanghai 200093, Peoples R China
[2] Origin Dynam Intelligent Robot Co Ltd, Zhengzhou 450000, Peoples R China
[3] Peking Univ, Big Data Res Ctr, Beijing 100091, Peoples R China
[4] East China Normal Univ, Software Engn Inst, Shanghai 200062, Peoples R China
关键词
Cross-modal retrieval; hashing; Remote sensing; unsupervised contrastive learning; remote sensing; IMAGE RETRIEVAL; NETWORK;
D O I
10.1109/JSTARS.2025.3538701
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In large-scale multimodal remote sensing data archives, the application of cross-modal technology to achieve fast retrieval between different modalities has attracted great attention. In this article, we focus on cross-modal retrieval technology between remote sensing images and text. At present, there is still a large heterogeneity problem in the semantic information extracted from different modal data in the remote sensing field, which leads to the inability to effectively utilize intraclass similarities and interclass differences in the hash learning process, ultimately resulting in low cross-modal retrieval accuracy. In addition, supervised learning-based methods require a large number of labeled training samples, which limits the large-scale application of hash-based cross-modal retrieval technology in the remote sensing field. To address this problem, this article proposes a new unsupervised cross-autoencoder contrast hashing method for RS retrieval. This method constructs an end-to-end deep hashing model, which mainly includes a feature extraction module and a hash representation module. The feature extraction module is mainly responsible for extracting deep semantic information from different modal data and sends the different modal semantic information to the hash representation module through the intermediate layer to learn and generate binary hash codes. In the hashing module, we introduce a new multiobjective loss function to increase the expression of intramodal and intermodal semantic consistency through multiscale semantic similarity constraints and contrastive learning and add a cross-autoencoding module to reconstruct and compare hash features to reduce the loss of semantic information during the learning process. This article conducts a large number of experiments on the UC Merced Land dataset and the RSICD dataset. The experimental results of these two popular benchmark datasets show that the proposed CACH method outperforms the most advanced unsupervised cross-modal hashing methods in RS.
引用
收藏
页码:6047 / 6059
页数:13
相关论文
共 50 条
  • [1] UNSUPERVISED CONTRASTIVE HASHING FOR CROSS-MODAL RETRIEVAL IN REMOTE SENSING
    Mikriukov, Georgii
    Ravanbakhsh, Mahdyar
    Demir, Begum
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4463 - 4467
  • [2] Deep Unsupervised Momentum Contrastive Hashing for Cross-modal Retrieval
    Lu, Kangkang
    Yu, Yanhua
    Liang, Meiyu
    Zhang, Min
    Cao, Xiaowen
    Zhao, Zehua
    Yin, Mengran
    Xue, Zhe
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 126 - 131
  • [3] Unsupervised Contrastive Cross-Modal Hashing
    Hu, Peng
    Zhu, Hongyuan
    Lin, Jie
    Peng, Dezhong
    Zhao, Yin-Ping
    Peng, Xi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3877 - 3889
  • [4] ONION: Online Semantic Autoencoder Hashing for Cross-Modal Retrieval
    Zhang, Donglin
    Wu, Xiao-Jun
    Chen, Guoqing
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2023, 14 (02)
  • [5] Revising similarity relationship hashing for unsupervised cross-modal retrieval
    Wu, You
    Li, Bo
    Li, Zhixin
    NEUROCOMPUTING, 2025, 614
  • [6] Structure-aware contrastive hashing for unsupervised cross-modal retrieval
    Cui, Jinrong
    He, Zhipeng
    Huang, Qiong
    Fu, Yulu
    Li, Yuting
    Wen, Jie
    NEURAL NETWORKS, 2024, 174
  • [7] Deep semantic similarity adversarial hashing for cross-modal retrieval
    Qiang, Haopeng
    Wan, Yuan
    Xiang, Lun
    Meng, Xiaojing
    NEUROCOMPUTING, 2020, 400 : 24 - 33
  • [8] Enhancing Remote Sensing Image Unsupervised Hashing Cross-modal Correlation with Similarity Matrix
    Li Haoran
    Xiong Wei
    Cui Yaqi
    Gu Xiangqi
    Xu Pingliang
    ACTA PHOTONICA SINICA, 2023, 52 (01)
  • [9] Hashing for Cross-Modal Similarity Retrieval
    Liu, Yao
    Yuan, Yanhong
    Huang, Qiaoli
    Huang, Zhixing
    2015 11TH INTERNATIONAL CONFERENCE ON SEMANTICS, KNOWLEDGE AND GRIDS (SKG), 2015, : 1 - 8
  • [10] Category-Level Contrastive Learning for Unsupervised Hashing in Cross-Modal Retrieval
    Xu, Mengying
    Luo, Linyin
    Lai, Hanjiang
    Yin, Jian
    DATA SCIENCE AND ENGINEERING, 2024, 9 (03) : 251 - 263