Method for predicting the risk of type 2 diabetes mellitus development in persons with visceral obesity and prediabetes

被引:0
作者
Nelaeva, Yulia V. [1 ]
Nelaeva, Alsu A. [1 ]
Yuzhakova, Anna E. [2 ]
Petrov, Ivan M. [1 ]
Sholomov, Igor F. [1 ]
机构
[1] Tyumen State Med Univ, Tyumen, Russia
[2] Multiprofile Consultat & Diagnost Ctr, Tyumen, Russia
关键词
type 2 diabetes mellitus; prediabetes; visceral obesity; mathematical modeling; cosinor analysis; discriminant analysis;
D O I
10.26442/00403660.2024.10.202870
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aim. To create a mathematical model, which will predict the development of type 2 diabetes mellitus (DM 2) in individuals with visceral obesity and/or prediabetes. Materials and methods. Clinical and laboratory data of 330 patients were analyzed. Multivariate regression and cosinor analysis determined the most sensitive parameters influencing the development of DM 2. With the help of discriminant linear analysis, a mathematical model for predicting DM 2 was built, with confirmation of its quality by ROC analysis. Results. In the studied groups (DM 2), prediabetes and without carbohydrate metabolism disorders (n=110), statistically significant correlations were obtained: between basal body temperature (BBT) and daily energy value - DEV (r=0.5; p< 0.0001), circadian rhythm amplitude glycemia and waist circumference (r=-0.7; p =0.004), age and BBT (r=0.5; p< 0.001). In groups without carbohydrate metabolism disorders and prediabetes, multiple regression analysis identified significant factors influencing the development of DM 2: daily amplitude of BBT, daily amplitude of glycemia and bedtime (p=0.001), DEV and meal time (p=0.0001). Cosinor analysis of the daily model of glycemia and BBT established an amplitude-phase shift (p=0.028; p =0.012). Linear discriminant analysis yielded a predictive model: D=-16.845 + age & khcy; 0.044 + gender & khcy; 0.026 + amplitude of circadian rhythm of BBT & khcy; 1.424 + amplitude of circadian rhythm of glycemia & khcy; 11.155 + bedtime & khcy; 0.054 + DEV & khcy; 0.0001 + waist circumference & khcy; 0.022 + glycated hemoglobin & khcy; 1.19, where-16.845 - constant, 0.044, 0.026, 1.424, 11.155, 0.054, 0.0001, 0.022, 1.19 - coefficients of the linear discriminant function. At D<0 no development of DM 2 is predicted, at D>0 the development of DM 2 is in the near future. Sensitivity ratio - 92.5%, specificity - 79.1% (ROC analysis). Conclusion. The presented predictive model has a high (92.5%) sensitivity due to the combination of 2 mathematical analyses. Most of the applied parameters are modifiable, which makes it possible to apply this model at the preventive stage.
引用
收藏
页码:942 / 949
页数:8
相关论文
共 50 条
  • [31] Prediabetes and diabetes mellitus type II after ischemic stroke
    Moelgg, Kurt
    Karisik, Anel
    Scherer, Lukas
    Buergi, Lucie
    Dejakum, Benjamin
    Komarek, Silvia
    Granna, Julian
    Boehme, Christian
    Pechlaner, Raimund
    Toell, Thomas
    Knoflach, Michael
    Kiechl, Stefan
    Kaser, Susanne
    Egger, Alexander
    Griesmacher, Andrea
    Mayer-Suess, Lukas
    [J]. EUROPEAN STROKE JOURNAL, 2025,
  • [32] Sleep Apnea and Cardiovascular Risk in Patients with Prediabetes and Type 2 Diabetes
    Paschou, Stavroula A.
    Bletsa, Evanthia
    Saltiki, Katerina
    Kazakou, Paraskevi
    Kantreva, Kanella
    Katsaounou, Paraskevi
    Rovina, Nikoletta
    Trakada, Georgia
    Bakakos, Petros
    Vlachopoulos, Charalambos V.
    Psaltopoulou, Theodora
    [J]. NUTRIENTS, 2022, 14 (23)
  • [33] Youth prediabetes and type 2 diabetes: Risk factors and prevalence of dysglycaemia
    Saleh, Mohamed
    Kim, Joon Young
    March, Christine
    Gebara, Nour
    Arslanian, Silva
    [J]. PEDIATRIC OBESITY, 2022, 17 (01):
  • [34] Alterations in Mitochondrial Oxidative Stress and Mitophagy in Subjects With Prediabetes and Type 2 Diabetes Mellitus
    Bhansali, Shipra
    Bhansali, Anil
    Walia, Rama
    Saikia, Uma Nahar
    Dhawan, Veena
    [J]. FRONTIERS IN ENDOCRINOLOGY, 2017, 8
  • [35] Developing risk models for predicting incidence of diabetes and prediabetes in the first-degree relatives of Iranian patients with type 2 diabetes and comparison with the finnish diabetes risk score
    Shahraki, Parisa Khodabandeh
    Feizi, Awat
    Aminorroaya, Sima
    Ghanbari, Heshmatollah
    Abyar, Majid
    Amini, Massoud
    Aminorroaya, Ashraf
    [J]. JOURNAL OF RESEARCH IN MEDICAL SCIENCES, 2025, 30 (01):
  • [36] Dynamic Change of β to α Ratio in Islets of Chinese People With Prediabetes and Type 2 Diabetes Mellitus
    Liu, Tengli
    Liang, Rui
    Wang, Le
    Zou, Jiaqi
    Wang, Guanqiao
    Liu, Na
    Sun, Peng
    Liu, Yaojuan
    Ding, Xuejie
    Lu, Chenxi
    Liang, Xue
    Wang, Shusen
    Shen, Zhongyang
    [J]. PANCREAS, 2020, 49 (05) : 692 - 698
  • [37] Progression from prediabetes to type 2 diabetes mellitus in adolescents: a real world experience
    Weiner, Alyson
    Zhang, Meng
    Ren, Sheng
    Tchang, Beverly
    Gandica, Rachelle
    Murillo, Jaime
    [J]. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE, 2023, 4
  • [38] Pioglitazone for NAFLD Patients With Prediabetes or Type 2 Diabetes Mellitus: A Meta-Analysis
    Lian, Jingxuan
    Fu, Jianfang
    [J]. FRONTIERS IN ENDOCRINOLOGY, 2021, 12
  • [39] Development of the CANRISK questionnaire to screen for prediabetes and undiagnosed type 2 diabetes
    Kaczorowski, Janusz
    Robinson, Chris
    Nerenberg, Kara
    [J]. CANADIAN JOURNAL OF DIABETES, 2009, 33 (04) : 381 - 385
  • [40] Phenotypes of prediabetes and type 2 diabetes
    Wagner, R.
    Haering, H. -U.
    Fritsche, A.
    [J]. DEUTSCHE MEDIZINISCHE WOCHENSCHRIFT, 2014, 139 (21) : 1109 - 1113