Method for predicting the risk of type 2 diabetes mellitus development in persons with visceral obesity and prediabetes

被引:0
作者
Nelaeva, Yulia V. [1 ]
Nelaeva, Alsu A. [1 ]
Yuzhakova, Anna E. [2 ]
Petrov, Ivan M. [1 ]
Sholomov, Igor F. [1 ]
机构
[1] Tyumen State Med Univ, Tyumen, Russia
[2] Multiprofile Consultat & Diagnost Ctr, Tyumen, Russia
关键词
type 2 diabetes mellitus; prediabetes; visceral obesity; mathematical modeling; cosinor analysis; discriminant analysis;
D O I
10.26442/00403660.2024.10.202870
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aim. To create a mathematical model, which will predict the development of type 2 diabetes mellitus (DM 2) in individuals with visceral obesity and/or prediabetes. Materials and methods. Clinical and laboratory data of 330 patients were analyzed. Multivariate regression and cosinor analysis determined the most sensitive parameters influencing the development of DM 2. With the help of discriminant linear analysis, a mathematical model for predicting DM 2 was built, with confirmation of its quality by ROC analysis. Results. In the studied groups (DM 2), prediabetes and without carbohydrate metabolism disorders (n=110), statistically significant correlations were obtained: between basal body temperature (BBT) and daily energy value - DEV (r=0.5; p< 0.0001), circadian rhythm amplitude glycemia and waist circumference (r=-0.7; p =0.004), age and BBT (r=0.5; p< 0.001). In groups without carbohydrate metabolism disorders and prediabetes, multiple regression analysis identified significant factors influencing the development of DM 2: daily amplitude of BBT, daily amplitude of glycemia and bedtime (p=0.001), DEV and meal time (p=0.0001). Cosinor analysis of the daily model of glycemia and BBT established an amplitude-phase shift (p=0.028; p =0.012). Linear discriminant analysis yielded a predictive model: D=-16.845 + age & khcy; 0.044 + gender & khcy; 0.026 + amplitude of circadian rhythm of BBT & khcy; 1.424 + amplitude of circadian rhythm of glycemia & khcy; 11.155 + bedtime & khcy; 0.054 + DEV & khcy; 0.0001 + waist circumference & khcy; 0.022 + glycated hemoglobin & khcy; 1.19, where-16.845 - constant, 0.044, 0.026, 1.424, 11.155, 0.054, 0.0001, 0.022, 1.19 - coefficients of the linear discriminant function. At D<0 no development of DM 2 is predicted, at D>0 the development of DM 2 is in the near future. Sensitivity ratio - 92.5%, specificity - 79.1% (ROC analysis). Conclusion. The presented predictive model has a high (92.5%) sensitivity due to the combination of 2 mathematical analyses. Most of the applied parameters are modifiable, which makes it possible to apply this model at the preventive stage.
引用
收藏
页码:942 / 949
页数:8
相关论文
共 50 条
  • [21] Prediabetes, type 2 diabetes mellitus and risk of Parkinson's disease: A population-based cohort study
    Sanchez-Gomez, Almudena
    Diaz, Yesika
    Duarte-Salles, Talita
    Compta, Yaroslau
    Jose Marti, Maria
    PARKINSONISM & RELATED DISORDERS, 2021, 89 : 22 - 27
  • [22] Executive summary: Updates to the dietary treatment of prediabetes and type 2 diabetes mellitus
    Pascual Fuster, Vicente
    Perez Perez, Antonio
    Carretero Gomez, Juana
    Caixas Pedragos, Assumpta
    Gomez-Huelgas, Ricardo
    Perez-Martinez, Pablo
    ENDOCRINOLOGIA DIABETES Y NUTRICION, 2021, 68 (04): : 277 - 287
  • [23] Risk Factors and Wellness Measures Associated with Prediabetes and Newly Diagnosed Type 2 Diabetes Mellitus in Hispanic Adults
    Dugani, Sagar B.
    Girardo, Marlene E.
    De Filippis, Eleanna
    Mielke, Michelle M.
    Vella, Adrian
    METABOLIC SYNDROME AND RELATED DISORDERS, 2021, 19 (03) : 180 - 189
  • [24] Executive summary: Updates to the dietary treatment of prediabetes and type 2 diabetes mellitus
    Pascual Fustera, V
    Perez Perez, A.
    Carretero Gomez, J.
    Caixas Pedragos, A.
    Gomez-Huelgas, R.
    Perez-Martinez, P.
    REVISTA CLINICA ESPANOLA, 2021, 221 (03): : 169 - 179
  • [25] Intervention for Prevention of Type 2 Diabetes Mellitus Among Prediabetes: A Review of the Literature
    Thipsawat, Sopida
    SAGE OPEN NURSING, 2023, 9
  • [26] Executive summary: Updates to the dietary treatment of prediabetes and type 2 diabetes mellitus
    Pascual Fuster, V
    Perez Perez, A.
    Carretero Gomez, J.
    Caixas Pedragos, A.
    Gomez-Huelgas, R.
    Perez-Martinez, P.
    CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS, 2021, 33 (02): : 73 - 84
  • [27] Integrated lipids biomarker of the prediabetes and type 2 diabetes mellitus Chinese patients
    Yang, Jiaying
    Wang, Mei
    Yang, Dawei
    Yan, Han
    Wang, Zhigang
    Yan, Dan
    Guo, Na
    FRONTIERS IN ENDOCRINOLOGY, 2023, 13
  • [28] Prevalence of Prediabetes and Diabetes Mellitus Type II in Bipolar Disorder
    Kittel-Schneider, Sarah
    Bury, Daniel
    Leopold, Karolina
    Haack, Sara
    Bauer, Michael
    Pfeiffer, Steffi
    Sauer, Cathrin
    Pfennig, Andrea
    Voelzke, Henry
    Grabe, Hans-Joergen
    Reif, Andreas
    FRONTIERS IN PSYCHIATRY, 2020, 11
  • [29] Prediabetes and diabetes mellitus type II after ischemic stroke
    Moelgg, Kurt
    Karisik, Anel
    Scherer, Lukas
    Buergi, Lucie
    Dejakum, Benjamin
    Komarek, Silvia
    Granna, Julian
    Boehme, Christian
    Pechlaner, Raimund
    Toell, Thomas
    Knoflach, Michael
    Kiechl, Stefan
    Kaser, Susanne
    Egger, Alexander
    Griesmacher, Andrea
    Mayer-Suess, Lukas
    EUROPEAN STROKE JOURNAL, 2025,
  • [30] The role of fat tissue in development of metabolic disorders in patients with diabetes mellitus type 2 and obesity
    Demidova, T. Yu.
    Selivanova, A. V.
    Ametov, A. S.
    TERAPEVTICHESKII ARKHIV, 2006, 78 (11) : 64 - 69