Experimental test of generalized multipartite entropic uncertainty relations

被引:3
作者
Wang, Zhao-An [1 ,2 ]
Xie, Bo-Fu [3 ]
Ming, Fei [3 ]
Wang, Yi-Tao [1 ,2 ]
Wang, Dong [3 ]
Meng, Yu [1 ,2 ]
Liu, Zheng-Hao [1 ,2 ]
Xu, Kai [1 ,2 ]
Tang, Jian-Shun [1 ,2 ,4 ]
Ye, Liu [3 ]
Li, Chuan-Feng [1 ,2 ,4 ]
Guo, Guang-Can [1 ,2 ,4 ]
Kais, Sabre [5 ,6 ,7 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Hefei 230026, Peoples R China
[3] Anhui Univ, Sch Phys & Optoelect Engn, Hefei 230601, Peoples R China
[4] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
[5] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27606 USA
[6] Purdue Univ, Dept Chem, Dept Phys, W Lafayette, IN 47907 USA
[7] Purdue Univ, Purdue Quantum Sci & Engn Inst, W Lafayette, IN 47907 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
QUANTUM; ENTANGLEMENT; PRINCIPLE;
D O I
10.1103/PhysRevA.110.062220
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Entropic uncertainty relation (EUR) formulates the restriction of the inherent uncertainty of quantum mechanics from an information-theoretic perspective. A tighter lower bound for uncertainty relations can provide information-theoretic security to quantum communication protocols. Recently, a generalized EUR (GEUR) for the measurement of multiple observables in arbitrary many-body systems has been formulated. Here, we experimentally test this GEUR using a four-photon entangled state with a controllable decoherence channel and show that for the tripartite scenario, the GEUR improves the entropic bound from Renes and Boileau's famous results. As an application, we further demonstrate an improvement of the secure key rate in quantum key distribution from the GEUR. Our results extend the test of EURs into multipartite regimes and may find applications in practical quantum cryptography tasks.
引用
收藏
页数:6
相关论文
共 40 条
[31]   Multipartite steering inequalities based on entropic uncertainty relations [J].
Riccardi, Alberto ;
Macchiavello, Chiara ;
Maccone, Lorenzo .
PHYSICAL REVIEW A, 2018, 97 (05)
[32]   Quantum cryptography with finite resources: Unconditional security bound for discrete-variable protocols with one-way postprocessing [J].
Scarani, Valerio ;
Renner, Renato .
PHYSICAL REVIEW LETTERS, 2008, 100 (20)
[33]   Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations [J].
Schneeloch, James ;
Broadbent, Curtis J. ;
Walborn, Stephen P. ;
Cavalcanti, Eric G. ;
Howell, John C. .
PHYSICAL REVIEW A, 2013, 87 (06)
[34]   Quantum randomness certified by the uncertainty principle [J].
Vallone, Giuseppe ;
Marangon, Davide G. ;
Tomasin, Marco ;
Villoresi, Paolo .
PHYSICAL REVIEW A, 2014, 90 (05)
[35]   Entropic uncertainty relation in neutrino oscillations [J].
Wang, Dong ;
Ming, Fei ;
Song, Xue-Ke ;
Ye, Liu ;
Chen, Jing-Ling .
EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (08)
[36]   Tighter generalized entropic uncertainty relations in multipartite systems [J].
Wu, Lin ;
Ye, Liu ;
Wang, Dong .
PHYSICAL REVIEW A, 2022, 106 (06)
[37]   Optimized entropic uncertainty relations for multiple measurements [J].
Xie, Bo-Fu ;
Ming, Fei ;
Wang, Dong ;
Ye, Liu ;
Chen, Jing-Ling .
PHYSICAL REVIEW A, 2021, 104 (06)
[38]   Quantum-memory-assisted entropic uncertainty relation under noise [J].
Xu, Z. Y. ;
Yang, W. L. ;
Feng, M. .
PHYSICAL REVIEW A, 2012, 86 (01)
[39]   Dynamics of the measurement uncertainty in an open system and its controlling [J].
Yao, Yu-Bing ;
Wang, Dong ;
Ming, Fei ;
Ye, Liu .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (03)
[40]   Experimental Greenberger-Horne-Zeilinger-Type Six-Photon Quantum Nonlocality [J].
Zhang, Chao ;
Huang, Yun-Feng ;
Wang, Zhao ;
Liu, Bi-Heng ;
Li, Chuan-Feng ;
Guo, Guang-Can .
PHYSICAL REVIEW LETTERS, 2015, 115 (26)