Experimental test of generalized multipartite entropic uncertainty relations

被引:3
作者
Wang, Zhao-An [1 ,2 ]
Xie, Bo-Fu [3 ]
Ming, Fei [3 ]
Wang, Yi-Tao [1 ,2 ]
Wang, Dong [3 ]
Meng, Yu [1 ,2 ]
Liu, Zheng-Hao [1 ,2 ]
Xu, Kai [1 ,2 ]
Tang, Jian-Shun [1 ,2 ,4 ]
Ye, Liu [3 ]
Li, Chuan-Feng [1 ,2 ,4 ]
Guo, Guang-Can [1 ,2 ,4 ]
Kais, Sabre [5 ,6 ,7 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Hefei 230026, Peoples R China
[3] Anhui Univ, Sch Phys & Optoelect Engn, Hefei 230601, Peoples R China
[4] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
[5] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27606 USA
[6] Purdue Univ, Dept Chem, Dept Phys, W Lafayette, IN 47907 USA
[7] Purdue Univ, Purdue Quantum Sci & Engn Inst, W Lafayette, IN 47907 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
QUANTUM; ENTANGLEMENT; PRINCIPLE;
D O I
10.1103/PhysRevA.110.062220
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Entropic uncertainty relation (EUR) formulates the restriction of the inherent uncertainty of quantum mechanics from an information-theoretic perspective. A tighter lower bound for uncertainty relations can provide information-theoretic security to quantum communication protocols. Recently, a generalized EUR (GEUR) for the measurement of multiple observables in arbitrary many-body systems has been formulated. Here, we experimentally test this GEUR using a four-photon entangled state with a controllable decoherence channel and show that for the tripartite scenario, the GEUR improves the entropic bound from Renes and Boileau's famous results. As an application, we further demonstrate an improvement of the secure key rate in quantum key distribution from the GEUR. Our results extend the test of EURs into multipartite regimes and may find applications in practical quantum cryptography tasks.
引用
收藏
页数:6
相关论文
共 40 条
[1]   Tightening the entropic uncertainty bound in the presence of quantum memory [J].
Adabi, F. ;
Salimi, S. ;
Haseli, S. .
PHYSICAL REVIEW A, 2016, 93 (06)
[2]   The uncertainty principle in the presence of quantum memory [J].
Berta, Mario ;
Christandl, Matthias ;
Colbeck, Roger ;
Renes, Joseph M. ;
Renner, Renato .
NATURE PHYSICS, 2010, 6 (09) :659-662
[3]   Scalable generation of graph-state entanglement through realistic linear optics [J].
Bodiya, T. P. ;
Duan, L. -M. .
PHYSICAL REVIEW LETTERS, 2006, 97 (14)
[4]   Characterization of dynamical measurement's uncertainty in a two-qubit system coupled with bosonic reservoirs [J].
Chen, Min-Nan ;
Wang, Dong ;
Ye, Liu .
PHYSICS LETTERS A, 2019, 383 (10) :977-984
[5]   Postselection Technique for Quantum Channels with Applications to Quantum Cryptography [J].
Christandl, Matthias ;
Koenig, Robert ;
Renner, Renato .
PHYSICAL REVIEW LETTERS, 2009, 102 (02)
[6]   Entropic uncertainty relations and their applications [J].
Coles, Patrick J. ;
Berta, Mario ;
Tomamichel, Marco ;
Wehner, Stephanie .
REVIEWS OF MODERN PHYSICS, 2017, 89 (01)
[7]   Improved entropic uncertainty relations and information exclusion relations [J].
Coles, Patrick J. ;
Piani, Marco .
PHYSICAL REVIEW A, 2014, 89 (02)
[8]   Experimental test of an entropic measurement uncertainty relation for arbitrary qubit observables [J].
Demirel, Buelent ;
Sponar, Stephan ;
Abbott, Alastair A. ;
Branciard, Cyril ;
Hasegawa, Yuji .
NEW JOURNAL OF PHYSICS, 2019, 21 (01)
[9]   UNCERTAINTY IN QUANTUM MEASUREMENTS [J].
DEUTSCH, D .
PHYSICAL REVIEW LETTERS, 1983, 50 (09) :631-633
[10]   Distillation of secret key and entanglement from quantum states [J].
Devetak, I ;
Winter, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2053) :207-235