End-to-end 3D instance segmentation of synthetic data and embryo microscopy images with a 3D Mask R-CNN

被引:0
|
作者
David, Gabriel [1 ]
Faure, Emmanuel [1 ]
机构
[1] Univ Montpellier, Ctr Natl Rech Sci, Lab Informat Robot & Microelect Montpellier, Montpellier, France
来源
FRONTIERS IN BIOINFORMATICS | 2025年 / 4卷
关键词
3D deep learning; instance segmentation; Mask R-CNN; microscopy; <italic>Phallusia mammillata</italic>; embryos; synthetic dataset; tensorflow;
D O I
10.3389/fbinf.2024.1497539
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, the exploitation of three-dimensional (3D) data in deep learning has gained momentum despite its inherent challenges. The necessity of 3D approaches arises from the limitations of two-dimensional (2D) techniques when applied to 3D data due to the lack of global context. A critical task in medical and microscopy 3D image analysis is instance segmentation, which is inherently complex due to the need for accurately identifying and segmenting multiple object instances in an image. Here, we introduce a 3D adaptation of the Mask R-CNN, a powerful end-to-end network designed for instance segmentation. Our implementation adapts a widely used 2D TensorFlow Mask R-CNN by developing custom TensorFlow operations for 3D Non-Max Suppression and 3D Crop And Resize, facilitating efficient training and inference on 3D data. We validate our 3D Mask R-CNN on two experiences. The first experience uses a controlled environment of synthetic data with instances exhibiting a wide range of anisotropy and noise. Our model achieves good results while illustrating the limit of the 3D Mask R-CNN for the noisiest objects. Second, applying it to real-world data involving cell instance segmentation during the morphogenesis of the ascidian embryo Phallusia mammillata, we show that our 3D Mask R-CNN outperforms the state-of-the-art method, achieving high recall and precision scores. The model preserves cell connectivity, which is crucial for applications in quantitative study. Our implementation is open source, ensuring reproducibility and facilitating further research in 3D deep learning.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] HCFS3D: Hierarchical coupled feature selection network for 3D semantic and instance segmentation
    Tan, Jingang
    Wang, Kangru
    Chen, Lili
    Zhang, Guanghui
    Li, Jiamao
    Zhang, Xiaolin
    IMAGE AND VISION COMPUTING, 2021, 109
  • [32] AUTOMATED SEGMENTATION OF SYNAPSES IN 3D EM DATA
    Kreshuk, A.
    Straehle, C. N.
    Sommer, C.
    Koethe, U.
    Knott, G.
    Hamprecht, F. A.
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 220 - 223
  • [33] Object spatial localization by fusing 3D point clouds and instance segmentation
    Xia, Chenfei
    Han, Shoudong
    Pan, Xiaofeng
    SN APPLIED SCIENCES, 2020, 2 (03):
  • [34] ATSGPN: Adaptive Threshold Instance Segmentation Network in 3D Point Cloud
    Sun, Yu
    Wang, Zhicheng
    Fei, Jingjing
    Chen, Ling
    Wei, Gang
    MIPPR 2019: PATTERN RECOGNITION AND COMPUTER VISION, 2020, 11430
  • [35] Object spatial localization by fusing 3D point clouds and instance segmentation
    Chenfei Xia
    Shoudong Han
    Xiaofeng Pan
    SN Applied Sciences, 2020, 2
  • [36] Object-Oriented 3D Semantic Mapping Based on Instance Segmentation
    Chi, Jinxin
    Wu, Hao
    Tian, Guohui
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2019, 23 (04) : 695 - 704
  • [37] 3D Tooth Instance Segmentation Learning Objectness and Affinity in Point Cloud
    Tian, Yan
    Zhang, Yujie
    Chen, Wei-Gang
    Liu, Dongsheng
    Wang, Huiyan
    Xu, Huayi
    Han, Jianfeng
    Ge, Yiwen
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (04)
  • [38] 3-D Building Instance Extraction From High-Resolution Remote Sensing Images and DSM With an End-to-End Deep Neural Network
    Yu, Dawen
    Ji, Shunping
    Wei, Shiqing
    Khoshelham, Kourosh
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 19
  • [39] Automated Segmentation of Immunostained Cell Nuclei in 3D Ultramicroscopy Images
    Scherzinger, Aaron
    Kleene, Florian
    Dierkes, Cathrin
    Kiefer, Friedemann
    Hinrichs, Klaus H.
    Jiang, Xiaoyi
    PATTERN RECOGNITION, GCPR 2016, 2016, 9796 : 105 - 116
  • [40] A Measurement Model for Aquatic Animals Based on Instance Segmentation and 3D Point Cloud
    He, Zhiqian
    Xu, Xiaoqing
    Luo, Jialu
    Chen, Ziwen
    Song, Weibo
    Cao, Lijie
    Huo, Zhongming
    IEEE ACCESS, 2024, 12 : 156208 - 156223