共 172 条
- [1] Abusager K., Baldwin M., Hsu V., Using power BI to inform clostridioides difficile ordering practices at an acute care hospital in Central Florida, Am. J. Infect. Control, 48, 8, Supplement, pp. S57-S58, (2020)
- [2] Ahmadi N., cao T.-V., Frouin J., Norton G.J., Price A.H., Genomic prediction of arsenic tolerance and grain yield in rice: Contribution of trait-specific markers and multi-environment models, Rice Sci., 28, 3, pp. 268-278, (2021)
- [3] Alam M.S., Kalpoma K., Karim M.S., Al Sefat A., Kudoh J.-I., Boro rice yield estimation model using modis ndvi data for Bangladesh, IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, (2019)
- [4] Alfred R., Obit J.H., Chin C.P.-Y., Haviluddin H., Lim Y., Towards paddy rice smart farming: A review on big data, machine learning, and rice production tasks, IEEE Access, 9, pp. 50358-50380, (2021)
- [5] Alkaff M., Khatimi H., Puspita W., Sari Y., Modelling and predicting wetland rice production using support vector regression, TELKOMNIKA ( Telecommun. Comput. Electron. Control), 17, 2, (2019)
- [6] Amankulova K., Farmonov N., Akramova P., Tursunov I., Mucsi L., Comparison of PlanetScope, Sentinel-2, and landsat 8 data in soybean yield estimation within-field variability with random forest regression, Heliyon, 9, 6, (2023)
- [7] Amar S., Sudiarso A., Herliansyah M.K., The accuracy measurement of stock price numerical prediction, J. Phys. Conf. Ser., 1569, 3, (2020)
- [8] Amaratunga V., Wickramasinghe L., Perera A., Jayasinghe J., Rathnayake U., Artificial neural network to estimate the paddy yield prediction using climatic data, Math. Probl. Eng., 2020, pp. 1-11, (2020)
- [9] Anon, Pakistan Agricultural Scientists Forum, Vol. 31, No. 4, (2020)
- [10] Aromataris E., Pearson A., The systematic review: An overview, AJN Am. J. Nurs., 114, 3, (2014)