PREDICTING RTMS TREATMENT EFFECTS USING OPEN-LOOP CONTROL AND NEURAL MANIFOLD

被引:0
作者
Shi, Hongyu [1 ]
Zheng, Kaizhong [1 ]
Wang, Huaning [2 ]
Li, Baojuan [3 ]
Chen, Badong [1 ]
机构
[1] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Natl Engn Res Ctr Visual Informat & Applicat, Natl Key Lab Human Machine Hybrid Augmented Intel, Xian, Peoples R China
[2] Fourth Mil Med Univ, Xijing Hosp, Xian 710032, Shaanxi, Peoples R China
[3] Fourth Mil Med Univ, Sch Biomed Engn, Xian 710032, Shaanxi, Peoples R China
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024 | 2024年
基金
中国国家自然科学基金;
关键词
Repetitive Transcranial Magnetic Stimulation (rTMS); Open-Loop Control; Manifold Learning; TRANSCRANIAL MAGNETIC STIMULATION; CONNECTIVITY; DEPRESSION;
D O I
10.1109/ICASSP48485.2024.10448375
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Repetitive transcranial magnetic stimulation (rTMS) is a common non-invasive treatment for medication-resistant major depressive disorder (MDD). It utilizes continuous and adjustable magnetic stimulation to modulate neural circuits implicated in the pathogenesis of depression. Nevertheless, constructing a universal and effective predictive factor for forecasting treatment outcomes remains challenging. To address this, we first collect neuroimaging data and five depression scales from 26 medication-resistant MDD patients before and after rTMS treatment. Then we propose a novel framework for predicting treatment effects precisely, which combines open-loop control and neural manifold estimation. This framework utilizes the geometric information of the manifold as a biomarker to predict the therapeutic efficacy of rTMS. Experiments based on the clinical dataset demonstrate the effectiveness and robustness of our framework.
引用
收藏
页码:2285 / 2289
页数:5
相关论文
共 21 条
[1]   Resting-state functional connectivity predicts motor cortex stimulation-dependent pain relief in fibromyalgia syndrome patients [J].
Argaman, Yuval ;
Granovsky, Yelena ;
Sprecher, Elliot ;
Sinai, Alon ;
Yarnitsky, David ;
Weissman-Fogel, Irit .
SCIENTIFIC REPORTS, 2022, 12 (01)
[2]   Subgenual Functional Connectivity Predicts Antidepressant Treatment Response to Transcranial Magnetic Stimulation: Independent Validation and Evaluation of Personalization [J].
Cash, Robin F. H. ;
Zalesky, Andrew ;
Thomson, Richard H. ;
Tian, Ye ;
Cocchi, Luca ;
Fitzgerald, Paul B. .
BIOLOGICAL PSYCHIATRY, 2019, 86 (02) :E5-E7
[3]   Optimal Randomized RANSAC [J].
Chum, Ondrej ;
Matas, Jiri .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (08) :1472-1482
[4]   Stimulated left DLPFC-nucleus accumbens functional connectivity predicts the anti-depression and anti-anxiety effects of rTMS for depression [J].
Du, Lian ;
Liu, Huan ;
Du, Wanyi ;
Chao, Fenglei ;
Zhang, Lei ;
Wang, Kejian ;
Huang, Chunxia ;
Gao, Yuan ;
Tang, Yong .
TRANSLATIONAL PSYCHIATRY, 2018, 7
[5]   Global connectivity and local excitability changes underlie antidepressant effects of repetitive transcranial magnetic stimulation [J].
Eshel, Neir ;
Keller, Corey J. ;
Wu, Wei ;
Jiang, Jing ;
Mills-Finnerty, Colleen ;
Huemer, Julia ;
Wright, Rachael ;
Fonzo, Gregory A. ;
Ichikawa, Naho ;
Carreon, David ;
Wong, Melinda ;
Yee, Andrew ;
Shpigel, Emmanuel ;
Guo, Yi ;
McTeague, Lisa ;
Maron-Katz, Adi ;
Etkin, Amit .
NEUROPSYCHOPHARMACOLOGY, 2020, 45 (06) :1018-1025
[6]   The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture [J].
Fan, Lingzhong ;
Li, Hai ;
Zhuo, Junjie ;
Zhang, Yu ;
Wang, Jiaojian ;
Chen, Liangfu ;
Yang, Zhengyi ;
Chu, Congying ;
Xie, Sangma ;
Laird, Angela R. ;
Fox, Peter T. ;
Eickhoff, Simon B. ;
Yu, Chunshui ;
Jiang, Tianzi .
CEREBRAL CORTEX, 2016, 26 (08) :3508-3526
[7]   RANDOM SAMPLE CONSENSUS - A PARADIGM FOR MODEL-FITTING WITH APPLICATIONS TO IMAGE-ANALYSIS AND AUTOMATED CARTOGRAPHY [J].
FISCHLER, MA ;
BOLLES, RC .
COMMUNICATIONS OF THE ACM, 1981, 24 (06) :381-395
[8]   Targeting repetitive transcranial magnetic stimulation in depression: do we really know what we are stimulating and how best to do it? [J].
Fitzgerald, Paul B. .
BRAIN STIMULATION, 2021, 14 (03) :730-736
[9]  
Fitzgerald PB, 2011, EXPERT REV MED DEVIC, V8, P85, DOI [10.1586/erd.10.57, 10.1586/ERD.10.57]
[10]   Neural Manifolds for the Control of Movement [J].
Gallego, Juan A. ;
Perich, Matthew G. ;
Miller, Lee E. ;
Solla, Sara A. .
NEURON, 2017, 94 (05) :978-984