Retinal Imaging-Based Oculomics: Artificial Intelligence as a Tool in the Diagnosis of Cardiovascular and Metabolic Diseases

被引:2
作者
Ghenciu, Laura Andreea [1 ,2 ]
Dima, Mirabela [3 ]
Stoicescu, Emil Robert [4 ,5 ,6 ]
Iacob, Roxana [4 ,7 ,8 ]
Boru, Casiana [9 ]
Hategan, Ovidiu Alin [9 ]
机构
[1] Victor Babes Univ Med & Pharm Timisoara, Dept Funct Sci, Eftimie Murgu Sq 2, Timisoara 300041, Romania
[2] Victor Babes Univ Med & Pharm Timisoara, Ctr Translat Res & Syst Med, Eftimie Murgu Sq 2, Timisoara 300041, Romania
[3] Victor Babes Univ Med & Pharm Timisoara, Dept Neonatol, Eftimie Murgu Sq 2, Timisoara 300041, Romania
[4] Politehn Univ Timisoara, Fac Mech, Field Appl Engn Sci, Specializat Stat Methods & Tech Hlth & Clin Res, Mihai Viteazul Blvd 1, Timisoara 300222, Romania
[5] Victor Babes Univ Med & Pharm Timisoara, Dept Radiol & Med Imaging, Eftimie Murgu Sq 2, Timisoara 300041, Romania
[6] Victor Babes Univ Med & Pharm Timisoara, Res Ctr Pharmaco Toxicol Evaluat, Eftimie Murgu Sq 2, Timisoara 300041, Romania
[7] Victor Babes Univ Med & Pharm Timisoara, Doctoral Sch, Eftimie Murgu Sq 2, Timisoara 300041, Romania
[8] Victor Babes Univ Med & Pharm Timisoara, Dept Anat & Embriol, Timisoara 300041, Romania
[9] Vasile Goldis Western Univ Arad, Med Fac, Discipline Anat & Embriol, Revolut Blvd 94, Arad 310025, Romania
关键词
oculomics; retinal microcirculation; cardiovascular disease; diabetes mellitus; deep learning; artificial intelligence; OCT; OCTA; fundus imaging; INTIMA-MEDIA THICKNESS; CORONARY-HEART-DISEASE; DIABETIC-RETINOPATHY; ATHEROSCLEROSIS RISK; BLOOD-PRESSURE; EYE; VALIDATION; ABNORMALITIES; HYPERTENSION; PHOTOGRAPHS;
D O I
10.3390/biomedicines12092150
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cardiovascular diseases (CVDs) are a major cause of mortality globally, emphasizing the need for early detection and effective risk assessment to improve patient outcomes. Advances in oculomics, which utilize the relationship between retinal microvascular changes and systemic vascular health, offer a promising non-invasive approach to assessing CVD risk. Retinal fundus imaging and optical coherence tomography/angiography (OCT/OCTA) provides critical information for early diagnosis, with retinal vascular parameters such as vessel caliber, tortuosity, and branching patterns identified as key biomarkers. Given the large volume of data generated during routine eye exams, there is a growing need for automated tools to aid in diagnosis and risk prediction. The study demonstrates that AI-driven analysis of retinal images can accurately predict cardiovascular risk factors, cardiovascular events, and metabolic diseases, surpassing traditional diagnostic methods in some cases. These models achieved area under the curve (AUC) values ranging from 0.71 to 0.87, sensitivity between 71% and 89%, and specificity between 40% and 70%, surpassing traditional diagnostic methods in some cases. This approach highlights the potential of retinal imaging as a key component in personalized medicine, enabling more precise risk assessment and earlier intervention. It not only aids in detecting vascular abnormalities that may precede cardiovascular events but also offers a scalable, non-invasive, and cost-effective solution for widespread screening. However, the article also emphasizes the need for further research to standardize imaging protocols and validate the clinical utility of these biomarkers across different populations. By integrating oculomics into routine clinical practice, healthcare providers could significantly enhance early detection and management of systemic diseases, ultimately improving patient outcomes. Fundus image analysis thus represents a valuable tool in the future of precision medicine and cardiovascular health management.
引用
收藏
页数:21
相关论文
共 113 条
  • [11] Multi-Ethnic Study of Atherosclerosis (MESA)
    Blaha, Michael J.
    DeFilippis, Andrew P.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (25) : 3195 - 3216
  • [12] SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation
    Blewitt, Marnie E.
    Gendrel, Anne-Valerie
    Pang, Zhenyi
    Sparrow, Duncan B.
    Whitelaw, Nadia
    Craig, Jeffrey M.
    Apedaile, Anwyn
    Hilton, Douglas J.
    Dunwoodie, Sally L.
    Brockdorff, Neil
    Kay, Graham F.
    Whitelaw, Emma
    [J]. NATURE GENETICS, 2008, 40 (05) : 663 - 669
  • [13] Noninvasive Cardiovascular Risk Assessment of the Asymptomatic Diabetic Patient The Imaging Council of the American College of Cardiology
    Budoff, Matthew J.
    Raggi, Paolo
    Beller, George A.
    Berman, Daniel S.
    Druz, Regina S.
    Malik, Shaista
    Rigolin, Vera H.
    Weigold, Wm Guy
    Soman, Prem
    [J]. JACC-CARDIOVASCULAR IMAGING, 2016, 9 (02) : 176 - 192
  • [14] Action to control cardiovascular risk in diabetes (ACCORD) trial: Design and methods
    Buse, John B.
    [J]. AMERICAN JOURNAL OF CARDIOLOGY, 2007, 99 (12A) : 21I - 33I
  • [15] Macula Structure and Microvascular Changes in Recent Small Subcortical Infarct Patients
    Cao, Yungang
    Yan, Jueyue
    Zhan, Zhenxiang
    Liang, Yuanbo
    Han, Zhao
    [J]. FRONTIERS IN NEUROLOGY, 2021, 11
  • [16] Potential Ocular Biomarkers for Early Detection of Alzheimer's Disease and Their Roles in Artificial Intelligence Studies
    Chaitanuwong, Pareena
    Singhanetr, Panisa
    Chainakul, Methaphon
    Arjkongharn, Niracha
    Ruamviboonsuk, Paisan
    Grzybowski, Andrzej
    [J]. NEUROLOGY AND THERAPY, 2023, 12 (05) : 1517 - 1532
  • [17] The association of retinal vessel calibres with heart failure and long-term alterations in cardiac structure and function: the Atherosclerosis Risk in Communities (ARIC) Study
    Chandra, Alvin
    Seidelmann, Sara B.
    Claggett, Brian L.
    Klein, Barbara E.
    Klein, Ronald
    Shah, Amil M.
    Solomon, Scott D.
    [J]. EUROPEAN JOURNAL OF HEART FAILURE, 2019, 21 (10) : 1207 - 1215
  • [18] Association of Cardiovascular Mortality and Deep Learning-Funduscopic Atherosclerosis Score derived from Retinal Fundus Images
    Chang, Jooyoung
    Ko, Ahryoung
    Park, Sang Min
    Choi, Seulggie
    Kim, Kyuwoong
    Kim, Sung Min
    Yun, Jae Moon
    Kang, Uk
    Shin, Il Hyung
    Shin, Joo Young
    Ko, Taehoon
    Lee, Jinho
    Oh, Baek-Lok
    Park, Ki Ho
    [J]. AMERICAN JOURNAL OF OPHTHALMOLOGY, 2020, 217 : 121 - 130
  • [19] A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre
    Cheung, Carol Y.
    Xu, Dejiang
    Cheng, Ching-Yu
    Sabanayagam, Charumathi
    Tham, Yih-Chung
    Yu, Marco
    Rim, Tyler Hyungtaek
    Chai, Chew Yian
    Gopinath, Bamini
    Mitchell, Paul
    Poulton, Richie
    Moffitt, Terrie E.
    Caspi, Avshalom
    Yam, Jason C.
    Tham, Clement C.
    Jonas, Jost B.
    Wang, Ya Xing
    Song, Su Jeong
    Burrell, Louise M.
    Farouque, Omar
    Li, Ling Jun
    Tan, Gavin
    Ting, Daniel S. W.
    Hsu, Wynne
    Lee, Mong Li
    Wong, Tien Y.
    [J]. NATURE BIOMEDICAL ENGINEERING, 2021, 5 (06) : 498 - +
  • [20] Retinal Microvasculature as a Model to Study the Manifestations of Hypertension
    Cheung, Carol Yim-lui
    Ikram, M. Kamran
    Sabanayagam, Charumathi
    Wong, Tien Yin
    [J]. HYPERTENSION, 2012, 60 (05) : 1094 - +