Retinal Imaging-Based Oculomics: Artificial Intelligence as a Tool in the Diagnosis of Cardiovascular and Metabolic Diseases

被引:2
作者
Ghenciu, Laura Andreea [1 ,2 ]
Dima, Mirabela [3 ]
Stoicescu, Emil Robert [4 ,5 ,6 ]
Iacob, Roxana [4 ,7 ,8 ]
Boru, Casiana [9 ]
Hategan, Ovidiu Alin [9 ]
机构
[1] Victor Babes Univ Med & Pharm Timisoara, Dept Funct Sci, Eftimie Murgu Sq 2, Timisoara 300041, Romania
[2] Victor Babes Univ Med & Pharm Timisoara, Ctr Translat Res & Syst Med, Eftimie Murgu Sq 2, Timisoara 300041, Romania
[3] Victor Babes Univ Med & Pharm Timisoara, Dept Neonatol, Eftimie Murgu Sq 2, Timisoara 300041, Romania
[4] Politehn Univ Timisoara, Fac Mech, Field Appl Engn Sci, Specializat Stat Methods & Tech Hlth & Clin Res, Mihai Viteazul Blvd 1, Timisoara 300222, Romania
[5] Victor Babes Univ Med & Pharm Timisoara, Dept Radiol & Med Imaging, Eftimie Murgu Sq 2, Timisoara 300041, Romania
[6] Victor Babes Univ Med & Pharm Timisoara, Res Ctr Pharmaco Toxicol Evaluat, Eftimie Murgu Sq 2, Timisoara 300041, Romania
[7] Victor Babes Univ Med & Pharm Timisoara, Doctoral Sch, Eftimie Murgu Sq 2, Timisoara 300041, Romania
[8] Victor Babes Univ Med & Pharm Timisoara, Dept Anat & Embriol, Timisoara 300041, Romania
[9] Vasile Goldis Western Univ Arad, Med Fac, Discipline Anat & Embriol, Revolut Blvd 94, Arad 310025, Romania
关键词
oculomics; retinal microcirculation; cardiovascular disease; diabetes mellitus; deep learning; artificial intelligence; OCT; OCTA; fundus imaging; INTIMA-MEDIA THICKNESS; CORONARY-HEART-DISEASE; DIABETIC-RETINOPATHY; ATHEROSCLEROSIS RISK; BLOOD-PRESSURE; EYE; VALIDATION; ABNORMALITIES; HYPERTENSION; PHOTOGRAPHS;
D O I
10.3390/biomedicines12092150
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cardiovascular diseases (CVDs) are a major cause of mortality globally, emphasizing the need for early detection and effective risk assessment to improve patient outcomes. Advances in oculomics, which utilize the relationship between retinal microvascular changes and systemic vascular health, offer a promising non-invasive approach to assessing CVD risk. Retinal fundus imaging and optical coherence tomography/angiography (OCT/OCTA) provides critical information for early diagnosis, with retinal vascular parameters such as vessel caliber, tortuosity, and branching patterns identified as key biomarkers. Given the large volume of data generated during routine eye exams, there is a growing need for automated tools to aid in diagnosis and risk prediction. The study demonstrates that AI-driven analysis of retinal images can accurately predict cardiovascular risk factors, cardiovascular events, and metabolic diseases, surpassing traditional diagnostic methods in some cases. These models achieved area under the curve (AUC) values ranging from 0.71 to 0.87, sensitivity between 71% and 89%, and specificity between 40% and 70%, surpassing traditional diagnostic methods in some cases. This approach highlights the potential of retinal imaging as a key component in personalized medicine, enabling more precise risk assessment and earlier intervention. It not only aids in detecting vascular abnormalities that may precede cardiovascular events but also offers a scalable, non-invasive, and cost-effective solution for widespread screening. However, the article also emphasizes the need for further research to standardize imaging protocols and validate the clinical utility of these biomarkers across different populations. By integrating oculomics into routine clinical practice, healthcare providers could significantly enhance early detection and management of systemic diseases, ultimately improving patient outcomes. Fundus image analysis thus represents a valuable tool in the future of precision medicine and cardiovascular health management.
引用
收藏
页数:21
相关论文
共 113 条
  • [1] Optical Coherence Tomography Angiography in Type 1 Diabetes Mellitus-Report 2: Diabetic Kidney Disease
    Ale-Chilet, Anibal
    Bernal-Morales, Carolina
    Barraso, Marina
    Hernandez, Teresa
    Oliva, Cristian
    Vinagre, Irene
    Ortega, Emilio
    Figueras-Roca, Marc
    Sala-Puigdollers, Anna
    Esquinas, Cristina
    Gimenez, Marga
    Esmatjes, Enric
    Adan, Alfredo
    Zarranz-Ventura, Javier
    [J]. JOURNAL OF CLINICAL MEDICINE, 2022, 11 (01)
  • [2] Using Artificial Intelligence to Analyse the Retinal Vascular Network: The Future of Cardiovascular Risk Assessment Based on Oculomics? A Narrative Review
    Arnould, Louis
    Meriaudeau, Fabrice
    Guenancia, Charles
    Germanese, Clement
    Delcourt, Cecile
    Kawasaki, Ryo
    Cheung, Carol Y.
    Creuzot-Garcher, Catherine
    Grzybowski, Andrzej
    [J]. OPHTHALMOLOGY AND THERAPY, 2023, 12 (02) : 657 - 674
  • [3] The EYE-MI Pilot Study: A Prospective Acute Coronary Syndrome Cohort Evaluated With Retinal Optical Coherence Tomography Angiography
    Arnould, Louis
    Guenancia, Charles
    Azemar, Arthur
    Alan, Guillaume
    Pitois, Stephane
    Bichat, Florence
    Zeller, Marianne
    Gabrielle, Pierre-Henry
    Bron, Alain M.
    Creuzot-Garcher, Catherine
    Cottin, Yves
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (10) : 4299 - 4306
  • [4] Identification of Subclinical Microvascular Biomarkers in Coronary Heart Disease in Retinal Imaging
    Aschauer, Julia
    Aschauer, Stefan
    Pollreisz, Andreas
    Datlinger, Felix
    Gatterer, Constantin
    Mylonas, Georgios
    Egner, Berit
    Hofer, Dominik
    Steiner, Irene
    Hengstenberg, Christian
    Schmidt-Erfurth, Ursula
    [J]. TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2021, 10 (13):
  • [5] Detection of signs of disease in external photographs of the eyes via deep learning
    Babenko, Boris
    Mitani, Akinori
    Traynis, Ilana
    Kitade, Naho
    Singh, Preeti
    Maa, April Y.
    Cuadros, Jorge
    Corrado, Greg S.
    Peng, Lily
    Webster, Dale R.
    Varadarajan, Avinash
    Hammel, Naama
    Liu, Yun
    [J]. NATURE BIOMEDICAL ENGINEERING, 2022, 6 (12) : 1370 - +
  • [6] Adaptive optics ophthalmoscopy: a systematic review of vascular biomarkers
    Bakker, Elise
    Dikland, Felix Anne
    van Bakel, Roan
    De Jesus, Danilo Andrade
    Brea, Luisa Sanchez
    Klein, Stefan
    van Walsum, Theo
    Rossant, Florence
    Farias, Daniela Castro
    Grieve, Kate
    Paques, Michel
    [J]. SURVEY OF OPHTHALMOLOGY, 2022, 67 (02) : 369 - 387
  • [7] Deep Learning of Retinal Imaging: A Useful Tool for Coronary Artery Calcium Score Prediction in Diabetic Patients
    Barriada, Ruben G.
    Simo-Servat, Olga
    Planas, Alejandra
    Hernandez, Cristina
    Simo, Rafael
    Masip, David
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [8] Artificial Intelligence: How is It Changing Medical Sciences and Its Future?
    Basu, Kanadpriya
    Sinha, Ritwik
    Ong, Aihui
    Basu, Treena
    [J]. INDIAN JOURNAL OF DERMATOLOGY, 2020, 65 (05) : 365 - 370
  • [9] Optical Coherence Tomography Angiography in Type 1 Diabetes Mellitus. Report 4: Glycated Haemoglobin
    Bernal-Morales, Carolina
    Ale-Chilet, Anibal
    Martin-Pinardel, Ruben
    Barraso, Marina
    Hernandez, Teresa
    Oliva, Cristian
    Vinagre, Irene
    Ortega, Emilio
    Figueras-Roca, Marc
    Sala-Puigdollers, Anna
    Gimenez, Marga
    Esmatjes, Enric
    Adan, Alfredo
    Zarranz-Ventura, Javier
    [J]. DIAGNOSTICS, 2021, 11 (09)
  • [10] Gender Prediction for a Multiethnic Population via Deep Learning Across Different Retinal Fundus Photograph Fields: Retrospective Cross-sectional Study
    Betzler, Bjorn Kaijun
    Yang, Henrik Hee Seung
    Thakur, Sahil
    Yu, Marco
    Quek, Ten Cheer
    Da Soh, Zhi
    Lee, Geunyoung
    Tham, Yih-Chung
    Wong, Tien Yin
    Rim, Tyler Hyungtaek
    Cheng, Ching-Yu
    [J]. JMIR MEDICAL INFORMATICS, 2021, 9 (08)