Transcendental Julia sets of minimal Hausdorff dimension

被引:0
作者
Burkart, Jack [1 ]
Lazebnik, Kirill [2 ]
机构
[1] Bard Coll Simons Rock, 84 Alford Rd, Great Barrington, MA 01230 USA
[2] Univ Texas Dallas, Dept Math Sci, 800 W Campbell Rd, Richardson, TX 75080 USA
关键词
complex dynamics; dimension; interpolation; Julia sets; CONNECTED WANDERING DOMAINS;
D O I
10.1017/etds.2024.124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the existence of transcendental entire functions f: C -> C with Hausdorff-dimension 11 Julia sets, such that every Fatou component of f has infinite inner connectivity. We also show that there exist singleton complementary components of any Fatou component of f, answering a question of Rippon and Stallard [Eremenko points and the structure of the escaping set. Trans. Amer. Math. Soc. 372(5) (2019), 3083-3111]. Our proof relies on a quasiconformal-surgery approach developed by Burkart and Lazebnik [Interpolation of power mappings. Rev. Mat. Iberoam. 39(3) (2023), 1181-1200].
引用
收藏
页数:73
相关论文
共 50 条
  • [31] On uniformly disconnected Julia sets
    Alastair N. Fletcher
    Vyron Vellis
    Mathematische Zeitschrift, 2021, 299 : 853 - 866
  • [32] Buried points in Julia sets
    Curry, Clinton P.
    Mayer, John C.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2010, 16 (5-6) : 435 - 441
  • [33] Julia sets of Zorich maps
    Tsantaris, Athanasios
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (02) : 692 - 728
  • [34] Hausdorff dimension in quasiregular dynamics
    Bergweiler, Walter
    Tsantaris, Athanasios
    ISRAEL JOURNAL OF MATHEMATICS, 2025, 265 (01) : 429 - 465
  • [35] HAUSDORFF DIMENSION OF WILD FRACTALS
    RUSHING, TB
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 334 (02) : 597 - 613
  • [36] ON THE SYMMETRY OF BIOCTONIONIC JULIA SETS
    Katunin, Andrzej
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2013, 12 (02) : 23 - 28
  • [37] HAUSDORFF DIMENSION OF A FAMILY OF NETWORKS
    Zeng, Qingcheng
    Xi, Lifeng
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (01)
  • [38] Hausdorff dimension and diophantine approximation
    Dodson, MM
    Kristensen, S
    FRACTAL GEOMETRY AND APPLICATIONS: A JUBILEE OF BENOIT MANDELBROT - ANALYSIS, NUMBER THEORY, AND DYNAMICAL SYSTEMS, PT 1, 2004, 72 : 305 - 347
  • [39] On uniformly disconnected Julia sets
    Fletcher, Alastair N.
    Vellis, Vyron
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (1-2) : 853 - 866
  • [40] Some cubic Julia sets
    Hung Hwan Lee
    Hun Ki Baek
    Korean Journal of Computational & Applied Mathematics, 1997, 4 (1): : 31 - 37