CONFORMABLE EXPONENTIAL DICHOTOMY AND ROUGHNESS OF CONFORMABLE FRACTIONAL DIFFERENTIAL EQUATION

被引:0
作者
Wang, Baishun [1 ,2 ]
Zhou, Jun [2 ]
机构
[1] Neijiang Normal Univ, Coll Math & Informat Sci, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Sichuan, Peoples R China
[2] Sichuan Normal Univ, Sch Math Sci, Chengdu 610066, Sichuan, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2025年 / 15卷 / 02期
关键词
Conformable fractional differential equations; roughness; nonuniform dichotomy; Conformable exponential dichotomy; stability; STABILITY QUESTION; DIFFUSION; EXISTENCE; CAPUTO;
D O I
10.11948/20240357
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The solutions of traditional fractional differential equations neither satisfy group property nor generate dynamical systems, so hyperbolicity of these equations is difficult to study. Benefitting from the new proposed conformable fractional derivative, we investigate dichotomy of conformable fractional equations, including conformable exponential dichotomy and stability, roughness and nonuniform dichotomy.
引用
收藏
页码:1170 / 1202
页数:33
相关论文
共 50 条
  • [1] On conformable fractional calculus
    Abdeljawad, Thabet
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 : 57 - 66
  • [2] [Anonymous], 1976, Principles of mathematical analysis
  • [3] Arnold L., 1998, Random Dynamical Systems, DOI DOI 10.1007/978-3-662-12878-7_4
  • [4] Fractional-order anisotropic diffusion for image denoising
    Bai, Jian
    Feng, Xiang-Chu
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (10) : 2492 - 2502
  • [5] Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative
    Balci, Ercan
    Ozturk, Ilhan
    Kartal, Senol
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 123 : 43 - 51
  • [6] Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations
    Baleanu, Dumitru
    Wu, Guo-Cheng
    Zeng, Sheng-Da
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 102 : 99 - 105
  • [7] Barreira L, 2018, SPRINGERBRIEF MATH, P1, DOI 10.1007/978-3-319-90110-7
  • [8] Barreira L., 2008, Stability of nonautonomous differential equations
  • [9] Barreira L., 2012, Ordinary Differential Equations: Qualitative Theory
  • [10] Polynomial growth rates
    Barreira, Luis
    Valls, Claudia
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) : 5208 - 5219