REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO FOR PULSE FITTING

被引:0
作者
Goodyer, Fred [1 ]
Ahmad, Bashar, I [1 ]
Godsill, Simon [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge, England
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2024) | 2024年
关键词
MCMC; priors; peak fitting; overfitting; TDR; MODEL; MCMC;
D O I
10.1109/ICASSP48485.2024.10448493
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper proposes a reversible jump Markov chain Monte Carlo method that provides efficient inference for the general problem of pulse fitting. In particular, it minimises the potential of an adopted parametric model overfitting to the (noisy) data via the inclusion of a peak proximity parameter. This facilitates learning a more representative underlying model and significantly reduces the computational cost. Synthetic and real data are used to demonstrate the efficacy of the introduced Bayesian technique.
引用
收藏
页码:9556 / 9560
页数:5
相关论文
共 29 条
[1]   An introduction to MCMC for machine learning [J].
Andrieu, C ;
de Freitas, N ;
Doucet, A ;
Jordan, MI .
MACHINE LEARNING, 2003, 50 (1-2) :5-43
[2]  
Damelin S., 2012, The Mathematics of Signal Processing No
[3]   Gibbs sampling [J].
Gelfand, AE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (452) :1300-1304
[4]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[5]   On the relationship between Markov chain Monte Carlo methods for model uncertainty [J].
Godsill, SJ .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2001, 10 (02) :230-248
[6]   Reversible jump Markov chain Monte Carlo computation and Bayesian model determination [J].
Green, PJ .
BIOMETRIKA, 1995, 82 (04) :711-732
[7]  
HASTINGS WK, 1970, BIOMETRIKA, V57, P97, DOI 10.1093/biomet/57.1.97
[8]   A population-based approach to analyzing pulses in time series of hormone data [J].
Horton, K. W. ;
Carlson, N. E. ;
Grunwald, G. K. ;
Mulvahill, M. J. ;
Polotsky, A. J. .
STATISTICS IN MEDICINE, 2017, 36 (16) :2576-2589
[9]   The Gaussian-Lorentzian Sum, Product, and Convolution (Voigt) functions in the context of peak fitting X-ray photoelectron spectroscopy (XPS) narrow scans [J].
Jain, Varun ;
Biesinger, Mark C. ;
Linford, Matthew R. .
APPLIED SURFACE SCIENCE, 2018, 447 :548-553
[10]  
Kirkham MB., 2014, PRINCIPLES SOIL PLAN