Core Concepts in Pharmacoepidemiology: Time-To-Event Analysis Approaches in Pharmacoepidemiology

被引:0
作者
Rippin, Gerd [1 ]
Salmasi, Shahrzad [2 ]
Sanz, Hector [3 ]
Largent, Joan [4 ]
机构
[1] IQVIA Commercial GmbH & Co OHG, Stat Serv, Frankfurt, Germany
[2] IQVIA Canada, Epidemiol, Kirkland, PQ, Canada
[3] IQVIA Espana Barcelona, Stat Serv, Barcelona, Spain
[4] IQVIA Deerfield, Epidemiol, Deerfield, IL USA
关键词
causal inference; survival analysis; time-to-event analysis; SURVIVAL; HAZARDS;
D O I
10.1002/pds.5886
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
AimThis article provides an overview of time-to-event (TTE) analysis in pharmacoepidemiology.Materials & MethodsThe key concept of censoring is reviewed, including right-, left-, interval- and informative censoring. Simple descriptive statistics are explained, including the nonparametric estimation of the TTE distribution as per Kaplan-Meier method, as well as more complex TTE regression approaches, including the parametric Accelerated Failure Time (AFT) model and the semi-parametric Cox Proportional Hazards and Restricted Mean Survival Time (RMST) models. Additional approaches and various TTE model extensions are presented as well. Finally, causal inference for TTE outcomes is addressed.ResultsA thorough review of the available concepts and methods outlines the immense variety of available and useful TTE models.DiscussionThere may be underused TTE concepts and methods, which are highlighted to raise awareness for researchers who aim to apply the most appropriate TTE approach for their study.ConclusionThis paper constitutes a modern summary of TTE analysis concepts and methods. A curated list of references is provided.
引用
收藏
页数:12
相关论文
共 68 条
  • [1] Aalen O. O., 2014, Wiley StatsRef: Statistics Reference Online, DOI [10.1002/9781118445112.stat05798, DOI 10.1002/9781118445112.STAT05798]
  • [2] Aalen OO, 2008, STAT BIOL HEALTH, P1
  • [3] Does Cox analysis of a randomized survival study yield a causal treatment effect?
    Aalen, Odd O.
    Cook, Richard J.
    Roysland, Kjetil
    [J]. LIFETIME DATA ANALYSIS, 2015, 21 (04) : 579 - 593
  • [4] Differential frequency in imaging-based outcome measurement: Bias in real-world oncology comparative-effectiveness studies
    Adamson, Blythe J. S.
    Ma, Xinran
    Griffith, Sandra D.
    Sweeney, Elizabeth M.
    Sarkar, Somnath
    Bourla, Ariel B.
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2022, 31 (01) : 46 - 54
  • [5] Allison D., 2010, Survival Analysis Using SAS. A Practical Guide, VSecond ed., DOI [10.1093/aje/kwr202, DOI 10.1093/AJE/KWR202]
  • [6] Modelling recurrent events: a tutorial for analysis in epidemiology
    Amorim, Leila D. A. F.
    Cai, Jianwen
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 (01) : 324 - 333
  • [7] Regression analysis of restricted mean survival time based on pseudo-observations
    Andersen, PK
    Hansen, MG
    Klein, JP
    [J]. LIFETIME DATA ANALYSIS, 2004, 10 (04) : 335 - 350
  • [8] BNT162b2 Vaccine Booster and Mortality Due to Covid-19
    Arbel, Ronen
    Hammerman, Ariel
    Sergienko, Ruslan
    Friger, Michael
    Peretz, Alon
    Netzer, Doron
    Yaron, Shlomit
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2021, 385 (26) : 2413 - 2420
  • [9] Joint Modeling of Longitudinal Markers and Time-to-Event Outcomes: An Application and Tutorial in Patients After Surgical Repair of Transposition of the Great Arteries
    Baart, Sara J.
    van der Palen, Roel L. F.
    Putter, Hein
    Tsonaka, Roula
    Blom, Nico A.
    Rizopoulos, Dimitris
    van Geloven, Nan
    [J]. CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2021, 14 (11): : E007593
  • [10] A General Machine Learning Framework for Survival Analysis
    Bender, Andreas
    Ruegamer, David
    Scheipl, Fabian
    Bischl, Bernd
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT III, 2021, 12459 : 158 - 173