Improved Multi-modal Image Fusion with Attention and Dense Networks: Visual and Quantitative Evaluation
被引:0
|
作者:
Banerjee, Ankan
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Technol, Rourkela, IndiaNatl Inst Technol, Rourkela, India
Banerjee, Ankan
[1
]
Patra, Dipti
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Technol, Rourkela, IndiaNatl Inst Technol, Rourkela, India
Patra, Dipti
[1
]
论文数: 引用数:
h-index:
机构:
Roy, Pradipta
[2
]
机构:
[1] Natl Inst Technol, Rourkela, India
[2] DRDO, Integrated Test Range, Candipur, India
来源:
COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT III
|
2024年
/
2011卷
关键词:
image fusion;
attention;
human perception;
Convolutional Block Attention Module;
D O I:
10.1007/978-3-031-58535-7_20
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
This article introduces a novel multi-modal image fusion approach based on Convolutional Block Attention Module and dense networks to enhance human perceptual quality and information content in the fused images. The proposed model preserves the edges of the infrared images and enhances the contrast of the visible image as a pre-processing part. Consequently, the use of Convolutional Block Attention Module has resulted in the extraction of more refined features from the source images. The visual results demonstrate that the fused images produced by the proposed method are visually superior to those generated by most standard fusion techniques. To substantiate the findings, quantitative analysis is conducted using various metrics. The proposed method exhibits the best Naturalness Image Quality Evaluator and Chen-Varshney metric values, which are human perception-based parameters. Moreover, the fused images exhibit the highest Standard Deviation value, signifying enhanced contrast. These results justify the proposed multi-modal image fusion technique outperforms standard methods both qualitatively and quantitatively, resulting in superior fused images with improved human perception quality.
机构:
Xinjiang Univ, Sch Software, Urumqi, Xinjiang, Peoples R ChinaXinjiang Univ, Sch Software, Urumqi, Xinjiang, Peoples R China
Liu, Jing
Tian, Shengwei
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Sch Software, Urumqi, Xinjiang, Peoples R ChinaXinjiang Univ, Sch Software, Urumqi, Xinjiang, Peoples R China
Tian, Shengwei
Yu, Long
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Network & Informat Ctr, Urumqi, Xinjiang, Peoples R ChinaXinjiang Univ, Sch Software, Urumqi, Xinjiang, Peoples R China
Yu, Long
Long, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Informat Sci & Engn, Changsha, Peoples R China
Cent South Univ, Big Data & Knowledge Engn Inst, Changsha, Peoples R ChinaXinjiang Univ, Sch Software, Urumqi, Xinjiang, Peoples R China
Long, Jun
Zhou, Tiejun
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Internet Informat Ctr, Urumqi, Xinjiang, Peoples R ChinaXinjiang Univ, Sch Software, Urumqi, Xinjiang, Peoples R China
Zhou, Tiejun
Wang, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Sch Software, Urumqi, Xinjiang, Peoples R ChinaXinjiang Univ, Sch Software, Urumqi, Xinjiang, Peoples R China