PREDICTING COVID-19 HOSPITALISATION USING A MIXTURE OF BAYESIAN PREDICTIVE SYNTHESES

被引:0
作者
Kobayashi, Genya [1 ]
Sugasawa, Shonosuke [2 ]
Kawakubo, Yuki [3 ]
Han, Dongu [4 ]
Choi, Taeryon [4 ]
机构
[1] Meiji Univ, Sch Commerce, Tokyo, Japan
[2] Keio Univ, Fac Econ, Keio, Japan
[3] Chiba Univ, Grad Sch Social Sci, Chiba, Japan
[4] Korea Univ, Dept Stat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Clustering; count data; dynamic factor model; finite mixture model; Markov chain Monte Carlo; P & oacute; lya-gamma augmentation; state space model; MODELS;
D O I
10.1214/24-AOAS1941
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a novel methodology called the mixture of Bayesian predictive syntheses (MBPS) for multiple time series count data for the challenging task of predicting the numbers of COVID-19 inpatients and isolated cases in Japan and Korea at the subnational level. MBPS combines a set of predictive models and partitions the multiple time series into clusters based on their contribution to predicting the outcome. In this way MBPS leverages the shared information within each cluster and is suitable for predicting COVID-19 inpatients since the data exhibit similar dynamics over multiple areas. Also, MBPS avoids using a multivariate count model, which is generally cumbersome to develop and implement. Our Japanese and Korean data analyses demonstrate that the proposed MBPS methodology has improved predictive accuracy and uncertainty quantification.
引用
收藏
页码:3383 / 3404
页数:22
相关论文
共 35 条
[1]  
Aastveit KA, 2019, Oxford Research Encyclopedia of Economics and Finance, DOI DOI 10.1093/ACREFORE/9780190625979.013.381
[2]   Bayesian Forecasting of Many Count-Valued Time Series [J].
Berry, Lindsay R. ;
West, Mike .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2020, 38 (04) :872-887
[3]  
Johnson MC, 2018, Arxiv, DOI arXiv:1803.01984
[4]  
Cabel D, 2025, Arxiv, DOI arXiv:2203.05197
[5]   Combining Large Numbers of Density Predictions with Bayesian Predictive Synthesis [J].
Chernis, Tony .
STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2024, 28 (02) :293-317
[6]   An ensemble n-sub-epidemic modeling framework for short-term forecasting epidemic trajectories: Application to the COVID-19 pandemic in the USA [J].
Chowell, Gerardo ;
Dahal, Sushma ;
Tariq, Amna ;
Roosa, Kimberlyn ;
Hyman, James M. ;
Luo, Ruiyan .
PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (10)
[7]   Efficient Posterior Sampling for Bayesian Poisson Regression [J].
D'Angelo, Laura ;
Canale, Antonio .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (03) :917-926
[8]  
Davis RA, 2016, HDB DISCRETE VALUED
[9]   Count Time Series: A Methodological Review [J].
Davis, Richard A. ;
Fokianos, Konstantinos ;
Holan, Scott H. ;
Joe, Harry ;
Livsey, James ;
Lund, Robert ;
Pipiras, Vladas ;
Ravishanker, Nalini .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (535) :1533-1547
[10]   MONOTONIC EFFECTS OF CHARACTERISTICS ON RETURNS [J].
Fisher, Jared D. ;
Puelz, David W. ;
Carvalho, Carlos M. .
ANNALS OF APPLIED STATISTICS, 2020, 14 (04) :1622-1650