Sentinel Lymph Node Biopsy in Breast Cancer Using Different Types of Tracers According to Molecular Subtypes and Breast Density-A Randomized Clinical Study

被引:0
作者
Faur, Ionut Flaviu [1 ,2 ,3 ]
Dobrescu, Amadeus [1 ,2 ]
Clim, Ioana Adelina [4 ]
Pasca, Paul [1 ,2 ]
Prodan-Barbulescu, Catalin [1 ,5 ,6 ]
Tarta, Cristi [1 ,2 ]
Neamtu, Carmen [7 ,8 ]
Isaic, Alexandru [1 ,2 ]
Brebu, Dan [1 ,2 ]
Braicu, Vlad [1 ,2 ]
Feier, Catalin Vladut Ionut [2 ,9 ]
Duta, Ciprian [1 ,2 ]
Totolici, Bogdan [8 ,10 ]
机构
[1] Timisoara Emergency Cty Hosp, Surg Clin 2, Timisoara 300723, Romania
[2] Victor Babes Univ Med & Pharm Timisoara, Dept Gen Surg 10, Timisoara 300041, Romania
[3] Vasile Goldis Western Univ Arad, Multidisciplinary Doctoral Sch, Arad 310025, Romania
[4] II Obstet & Gynecol Clin Dominic Stanca, Cluj Napoca 400124, Romania
[5] Victor Babes Univ Med & Pharm, Dept Discipline Anat & Embriol 1, Timisoara 300041, Romania
[6] Victor Babes Univ Med & Pharm Timisoara, Doctoral Sch, Eftimie Murgu Sq 2, Timisoara 300041, Romania
[7] Vasile Goldis Western Univ Arad, Fac Dent, Arad 310025, Romania
[8] Arad Cty Emergency Clin Hosp, Clin Gen Surg 1, Arad 310158, Romania
[9] Pius Brinzeu Clin Emergency Hosp, Surg Clin 1, Timisoara 300723, Romania
[10] Vasile Goldis Western Univ Arad, Fac Med, Dept Gen Surg, Arad 310025, Romania
关键词
sentinel lymph node; ICG; methylene blue; breast density; Tabar-Gram classification; molecular subtypes; axillary lymph node dissection; TISSUE; RISK;
D O I
10.3390/diagnostics14212439
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Sentinel lymph node biopsy (SLNB) has become a method more and more frequently used in loco-regional breast cancer in the initial stages. Starting from the first report on the technical feasibility of the sentinel node method in breast cancer, published by Krag (1993) and Giuliano (1994), the method underwent numerous improvements and was also largely used worldwide. Methods: This article is a prospective study that took place at the "SJUPBT Surgery Clinic Timisoara" over a period of 1 year between July 2023 and July 2024, during which 137 underwent sentinel lymph node biopsy (SLNB) based on the current guidelines. For the identification of sentinel lymph nodes, we used various methods, including single traces and also a dual tracer and triple tracer. Results: Breast density represents a predictive biomarker for the identification rate of a sentinel node, being directly correlated with BMI (above 30 kg/m(2)) and with an age of above 50 years. The classification of the patients according to breast density represents an important criterion given that an adipose breast density (Tabar-Gram I-II) represents a lower IR of SLN compared with a density of the fibro-nodular type (Tabar-Gram III-V). We did not obtain any statistically significant data for the linear correlations between IR and the molecular profile, whether referring to the luminal subtypes (Luminal A and Luminal B) or to the non-luminal ones (HER2+ and TNBC), with p > 0.05, 0.201 [0.88, 0.167]; z = 1.82.
引用
收藏
页数:14
相关论文
共 40 条
[1]   Temporal mammogram image registration using optimized curvilinear coordinates [J].
Abdel-Nasser, Mohamed ;
Moreno, Antonio ;
Puig, Domenec .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 127 :1-14
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]   Breast Tissue Composition and Susceptibility to Breast Cancer [J].
Boyd, Norman F. ;
Martin, Lisa J. ;
Bronskill, Michael ;
Yaffe, Martin J. ;
Duric, Neb ;
Minkin, Salomon .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2010, 102 (16) :1224-1237
[4]   THE QUANTITATIVE-ANALYSIS OF MAMMOGRAPHIC DENSITIES [J].
BYNG, JW ;
BOYD, NF ;
FISHELL, E ;
JONG, RA ;
YAFFE, MJ .
PHYSICS IN MEDICINE AND BIOLOGY, 1994, 39 (10) :1629-1638
[5]   Automated analysis of mammographic densities [J].
Byng, JW ;
Boyd, NF ;
Fishell, E ;
Jong, RA ;
Yaffe, MJ .
PHYSICS IN MEDICINE AND BIOLOGY, 1996, 41 (05) :909-923
[6]   Predicting the Extent of Nodal Disease in Early-Stage Breast Cancer [J].
Caudle, Abigail S. ;
Kuerer, Henry M. ;
Le-Petross, Huong T. ;
Yang, Wei ;
Yi, Min ;
Bedrosian, Isabelle ;
Krishnamurthy, Savitri ;
Fornage, Bruno D. ;
Hunt, Kelly K. ;
Mittendorf, Elizabeth A. .
ANNALS OF SURGICAL ONCOLOGY, 2014, 21 (11) :3440-3447
[7]   Deep Learning for Mammographic Breast Density Assessment and Beyond [J].
Chan, Heang-Ping ;
Helvie, Mark A. .
RADIOLOGY, 2019, 290 (01) :59-60
[8]   A first evaluation of breast radiological density assessment by QUANTRA software as compared to visual classification [J].
Ciatto, Stefano ;
Bernardi, Daniela ;
Calabrese, Massimo ;
Durando, Manuela ;
Gentilini, Maria Adalgisa ;
Mariscotti, Giovanna ;
Monetti, Francesco ;
Moriconi, Enrica ;
Pesce, Barbara ;
Roselli, Antonella ;
Stevanin, Carmen ;
Tapparelli, Margherita ;
Houssami, Nehmat .
BREAST, 2012, 21 (04) :503-506
[9]   Determination of mammographic breast density using a deep convolutional neural network [J].
Ciritsis, Alexander ;
Rossi, Cristina ;
de Martini, Ilaria Vittoria ;
Eberhard, Matthias ;
Marcon, Magda ;
Becker, Anton S. ;
Berger, Nicole ;
Boss, Andreas .
BRITISH JOURNAL OF RADIOLOGY, 2018, 92 (1093)
[10]   Biological Subtypes of Breast Cancer and Sentinel Lymph Node Biopsy [J].
Colakoglu, Muhammet Kadri ;
Guven, Erhan ;
Akgul, Gokhan Giray ;
Dogan, Lutfi ;
Gulcelik, Mehmet Ali .
EUROPEAN JOURNAL OF BREAST HEALTH, 2018, 14 (02) :100-104