Integration of BOTDA and φ-OTDR distributed fiber sensing for multiple parameters monitoring

被引:0
作者
Wang, Zi [1 ]
Zou, Yang-En [1 ]
Guo, Chen-Yin [1 ]
Liaw, Shien-Kuei [1 ]
Yang, Ya-Mei [2 ]
Lee, Bo-Heng [2 ]
Yeh, Chien-Hung [3 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Elect & Comp Engn, Taipei, Taiwan
[2] Ind Technol Res Inst, Energy & Environm Res Labs, Tainan, Taiwan
[3] Feng Chia Univ, Dept Photon, Taichung, Taiwan
关键词
distributed optical fiber sensing; rayleigh and brillouin scattering; vibration; strain; and temperature sensing; SYSTEM;
D O I
10.1088/1402-4896/adbab9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, the integration of the Brillouin optical time-domain analysis (BOTDA) and the phase-sensitive optical time domain reflectometry (phi-OTDR) distributed fiber sensing systems is discussed. By combining the two systems and sharing common instruments, the cost of the experiments is minimized, enabling the sensing of three parameters: temperature, strain, and vibration on the same 18.7 km fiber. In the BOTDA part, the focus is on temperature and strain analysis. Two 4 m dispersion shifted fibers (DSF) are used to simulate strain at different positions, causing the Brillouin frequency shift (BFS) to shift from 10.88 GHz to 10.52 GHz, allowing for strain sensing. The two 4 m single mode fibers and DSF are separately heated from room temperature to 200 degrees C, resulting in an R2 value of 0.97654 and 0.99958, respectively, indicating a good linear relationship. In the phi-OTDR section, vibration point frequencies were demodulated using an external interferometer system based on Mach-Zehnder interferometer (MZI). This article presents comprehensive experiments that demonstrate the ability to achieve multi-parameter sensing on a single fiber using a hybrid system, all within a low-cost framework.
引用
收藏
页数:13
相关论文
共 22 条
  • [1] Agrawal G., 2010, Nonlinear Science at the Dawn of the 21st Century. Lecture Notes in Physics, Vvol 542, DOI [10.1007/3-540-46629-09, DOI 10.1007/3-540-46629-09]
  • [2] Recent Progress in Distributed Fiber Optic Sensors
    Bao, Xiaoyi
    Chen, Liang
    [J]. SENSORS, 2012, 12 (07) : 8601 - 8639
  • [3] Temperature Monitoring for 500 kV Oil-Filled Submarine Cable Based on BOTDA Distributed Optical Fiber Sensing Technology: Method and Application
    Chen, Yu
    Wang, Shuang
    Hao, Yi
    Yao, Kai
    Li, Hanzhi
    Jia, Feng
    Yue, Dongli
    Shi, Qingyun
    Cheng, Yonghong
    Huang, Xiaowei
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [4] Hybrid Brillouin/Rayleigh sensor for multiparameter measurements in optical fibers
    Coscetta, A.
    Catalano, E.
    Cerri, E.
    Cennamo, N.
    Zeni, L.
    Minardo, A.
    [J]. OPTICS EXPRESS, 2021, 29 (15) : 24025 - 24031
  • [5] Ultra-Long-Distance Hybrid BOTDA/Φ-OTDR
    Fu, Yun
    Wang, Zinan
    Zhu, Richeng
    Xue, Naitian
    Jiang, Jialin
    Lu, Chongyu
    Zhang, Bin
    Yang, Le
    Atubga, David
    Rao, Yunjiang
    [J]. SENSORS, 2018, 18 (04)
  • [6] Optical-fiber sensors: Temperature and pressure sensors
    Grattan, KTV
    Sun, T
    [J]. MRS BULLETIN, 2002, 27 (05) : 389 - 395
  • [7] All Fiber Distributed Vibration Sensing Using Modulated Time-Difference Pulses
    He, Qian
    Zhu, Tao
    Xiao, Xianghui
    Zhang, Baomei
    Diao, Dongmei
    Bao, Xiaoyi
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2013, 25 (20) : 1955 - 1957
  • [8] Review of the present status of optical fiber sensors
    Lee, B
    [J]. OPTICAL FIBER TECHNOLOGY, 2003, 9 (02) : 57 - 79
  • [9] Influence of Laser Linewidth on Phase-OTDR System Based on Heterodyne Detection
    Li, Jiong
    Zhang, Zhitao
    Gan, Jiulin
    Zhang, Zhishen
    Heng, Xiaobao
    Zhou, Kaijun
    Zhao, Hua
    Xu, Shanhui
    Yang, Zhongmin
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (11) : 2641 - 2647
  • [10] Liaw SK, 2023, 2023 INTERNATIONAL WORKSHOP ON FIBER OPTICS ON ACCESS NETWORKS, FOAN, P14, DOI 10.1109/FOAN59927.2023.10328087