Indicators of adaptive learning in virtual learning environments: Systematic Literature Review

被引:0
作者
Sachete, Andreia dos Santos [1 ]
Gomes, Raquel Salcedo [2 ]
Canto Filho, Alberto Bastos [2 ]
de Lima, Jose Valdeni [2 ]
机构
[1] Inst Fed Educ Ciencia & Tecnol Farroupilha, Campus Alegrete,RS-377,Km 27, BR-97555000 Alegrete, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Ave Paulo Gama 110, BR-90040060 Porto Alegre, RS, Brazil
来源
REVISTA LATINOAMERICANA DE TECNOLOGIA EDUCATIVA-RELATEC | 2024年 / 23卷 / 02期
关键词
Adaptive Learning; Learning Indicators; Virtual Learning Environments; Personalized teaching; Adaptive environment;
D O I
10.17398/1695-288X.23.2.69
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Digital Information and Communication Technologies act as partners in the educationalcontext, making it more dynamic through Virtual Learning Environments (VLEs). The adaptivesystem is based on technological solutions/tools, which allow the customization of teachingprocesses according to the student's singularities. Therefore, we conducted a systematic literaturereview (SLR) to elucidate which educational performance indicators best guide adaptive learning invirtual learning environments. To this end, we adopted the principles of Preferred Reporting Itemsfor Systematic Reviews and Meta-Analyses (PRISMA) as a systematic review protocol, and asoperational support, we used the online tool Parsifal. The initial database search - IEEE, ACM, andScopus - returned 276 articles. After filtering based on the protocol, 16 articles remained part of theanalysis and discussion corpus. The RSL results indicate that most of the indicators used to guideactivities are based on the correctness and error of the questions. This shows that there is still muchto be implemented in learning adaptability in virtual environments; for a more holistic assessmentof learning, it is necessary to consider an integrated set of these indicators and not justindividualized analyses.
引用
收藏
页数:116
相关论文
共 40 条
[1]   A robust classification to predict learning styles in adaptive E-learning systems [J].
Azzi, Ibtissam ;
Jeghal, Adil ;
Radouane, Abdelhay ;
Yahyaouy, Ali ;
Tairi, Hamid .
EDUCATION AND INFORMATION TECHNOLOGIES, 2020, 25 (01) :437-448
[2]  
Barbaguelatta E, 2018, P INT C CHIL COMPUT
[3]  
Behar Patricia Alejandra, 2013, Competencias em educacao a distancia, P312, DOI [10.15448/2179-8435.2014.2, DOI 10.15448/2179-8435.2014.2]
[4]  
Cai R., 2018, P 2018 INT C DISTANC, P103
[5]  
Camillo E. J., 2019, Revista Exitus, V9, P476, DOI [10.24065/2237-9460.2019v9n3ID925, DOI 10.24065/2237-9460.2019V9N3ID925]
[6]   A framework for creating automated online adaptive tests using multiple-criteria decision analysis [J].
Chrysafiadi, Konstantina ;
Troussas, Christos ;
Virvou, Maria .
2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, :226-231
[7]  
D'Aniello G, 2020, IEEE CONF COGNIT, P195, DOI [10.1109/CogSIMA49017.2020.9216177, 10.1109/cogsima49017.2020.9216177]
[8]  
Despotovic-Zrakic M, 2012, EDUC TECHNOL SOC, V15, P326
[9]  
Dounas L., 2019, Journal of Information Technology Education: Research, V18, DOI [10.28945/4270161-184, DOI 10.28945/4270161-184]
[10]  
Fontaine G, 2017, JMIR RES PROTOC, V6, DOI 10.2196/resprot.8085