Contractibility of boundaries of cocompact convex sets and embeddings of limit sets

被引:0
|
作者
Bregman, Corey [1 ]
Incerti-Medici, Merlin [2 ]
机构
[1] Tufts Univ, Dept Math, Medford, MA 02155 USA
[2] Univ Wien, Fak Math, A-1090 Vienna, Austria
来源
基金
奥地利科学基金会;
关键词
CAT(0) spaces; Cartan-Hadamard manifold; barycenters; contractibility; quasi-convex codimension one subgroups; MANIFOLDS; SPACES; HULLS;
D O I
10.1515/agms-2024-0015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide sufficient conditions as to when a boundary component of a cocompact convex set in a CAT ( 0 ) {\rm{CAT}}\left(0) -space is contractible. We then use this to study when the limit set of a quasi-convex, codimension one subgroup of a negatively curved manifold group is "wild" in the boundary. The proof is based on a notion of coarse upper curvature bounds in terms of barycenters and the careful study of interpolation in geodesic metric spaces.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] LIMIT-THEOREMS FOR CONVEX HULLS OF RANDOM SETS
    MOLCHANOV, IS
    ADVANCES IN APPLIED PROBABILITY, 1993, 25 (02) : 395 - 414
  • [22] Limit sets of convex non-elastic billiards
    Markarian, Roberto
    Kamphorst, Sylvie Oliffson
    Pinto-de-Carvalho, Sonia
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2012, 27 (02): : 271 - 282
  • [23] Contractibility and Connectedness of Efficient Point Sets
    X. Y. Zheng
    Journal of Optimization Theory and Applications, 2000, 104 : 717 - 737
  • [24] Affine embeddings of Cantor sets and dimension of αβ-sets
    Feng, De-Jun
    Xiong, Ying
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 226 (02) : 805 - 826
  • [25] Affine embeddings of Cantor sets and dimension of αβ-sets
    De-Jun Feng
    Ying Xiong
    Israel Journal of Mathematics, 2018, 226 : 805 - 826
  • [26] TYPICAL CONVEX-SETS OF CONVEX-SETS
    SCHWARZ, T
    ZAMFIRESCU, T
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1987, 43 : 287 - 290
  • [27] The Rare Eclipse Problem on Tiles: Quantised Embeddings of Disjoint Convex Sets
    Cambareri, Valerio
    Xu, Chunlei
    Jacques, Laurent
    2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 241 - 245
  • [28] Wiggly sets and limit sets
    Bishop, CJ
    Jones, PW
    ARKIV FOR MATEMATIK, 1997, 35 (02): : 201 - 224
  • [29] Quasi-convex functions on subspaces and boundaries of quasi-convex sets
    Zhang, KW
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 : 783 - 799
  • [30] Embeddings of Causal Sets
    Reid, David D.
    PROCEEDINGS OF THE NATIONAL SOCIETY OF BLACK PHYSICISTS, 2009, 1140 : 60 - 68