Molecular Design of Solid Polymer Electrolytes with Enthalpy-Entropy Manipulation for Li Metal Batteries with Aggressive Cathode Chemistry

被引:21
作者
Ye, Guo [1 ]
Zhu, Lujun [1 ]
Ma, Yue [1 ]
He, Mengxue [1 ]
Zheng, Chenxi [2 ]
Shen, Kaier [1 ]
Hong, Xufeng [1 ]
Xiao, Zhitong [1 ]
Jia, Yongfeng [1 ]
Gao, Peng [2 ]
Pang, Quanquan [1 ]
机构
[1] Peking Univ, Sch Mat Sci & Engn, Beijing Key Lab Theory & Technol Adv Battery Mat, Beijing 100871, Peoples R China
[2] Peking Univ, Int Ctr Quantum Mat, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金; 国家重点研发计划;
关键词
LITHIUM; COMPENSATION; RECOGNITION;
D O I
10.1021/jacs.4c09062
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid polymer electrolytes (SPEs) with high ion conductivity, high Li+ transference number, and a wide electrochemical window are promising for the next-generation high-energy Li metal batteries (LMBs). Here we describe an enthalpy-entropy manipulation strategy enabling a class of polycarbonate-based copolymeric electrolytes (PCCEs) with regulated cation/anion solvation via a molecular design of the polymer backbone. By integrating a weakly solvating linear carbonate with another strongly solvating cyclic carbonate segment in the polymer backbone, the cation-dipole coordination for Li+ ions (with two types of carbonyl groups) is weakened (low enthalpy penalty) and nondirectional (high entropy penalty), which enables a weak solvation and rapid diffusion of Li+. We further introduce a bis-acrylamide-based cross-linking segment which, other than imparting high mechanical strength, exhibits dihydrogen bonding with the difluoro(oxalate) borate anions, which is strong (high enthalpy penalty) and directional (low entropy penalty), thus restricting the migration of anions. As a result, the PCCE delivers a high ionic conductivity of 0.66 mS cm(-1) with a high Li+ transference number (0.76) at 25 degrees C, as well as high oxidation stability. By an in situ polymerization approach, the PCCE enables LMBs using high-nikel LiNi0.8Co0.1Mn0.1O2 cathodes with a high capacity retention of 82.2% over 800 cycles with a cutoff voltage of 4.5 V and further LMBs using aggressive LiNi0.5Mn1.5O4 cathodes with a 96.4% capacity retention over 300 cycles with a cutoff voltage of 5.0 V. The described enthalpy-entropy manipulation approach offers a unique perspective for the molecular design of high-performance SPEs for high-energy Li metal batteries.
引用
收藏
页码:27668 / 27678
页数:11
相关论文
共 43 条
[21]   Stable Anion-Derived Solid Electrolyte Interphase in Lithium Metal Batteries [J].
Li, Tao ;
Zhang, Xue-Qiang ;
Yao, Nan ;
Yao, Yu-Xing ;
Hou, Li-Peng ;
Chen, Xiang ;
Zhou, Ming-Yue ;
Huang, Jia-Qi ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (42) :22683-22687
[22]   Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries [J].
Li, Zhuo ;
Yu, Rui ;
Weng, Suting ;
Zhang, Qinghua ;
Wang, Xuefeng ;
Guo, Xin .
NATURE COMMUNICATIONS, 2023, 14 (01)
[23]   Cooperative Shielding of Bi-Electrodes via In Situ Amorphous Electrode-Electrolyte Interphases for Practical High-Energy Lithium-Metal Batteries [J].
Liang, Jia-Yan ;
Zhang, Xu-Dong ;
Zhang, Yu ;
Huang, Lin-Bo ;
Yan, Min ;
Shen, Zhen-Zhen ;
Wen, Rui ;
Tang, Jilin ;
Wang, Fuyi ;
Shi, Ji-Lei ;
Wan, Li-Jun ;
Guo, Yu-Guo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (40) :16768-16776
[24]   Lithium battery chemistries enabled by solid-state electrolytes [J].
Manthiram, Arumugam ;
Yu, Xingwen ;
Wang, Shaofei .
NATURE REVIEWS MATERIALS, 2017, 2 (04)
[25]   Anion-enrichment interface enables high-voltage anode-free lithium metal batteries [J].
Mao, Minglei ;
Ji, Xiao ;
Wang, Qiyu ;
Lin, Zejing ;
Li, Meiying ;
Liu, Tao ;
Wang, Chengliang ;
Hu, Yong-Sheng ;
Li, Hong ;
Huang, Xuejie ;
Chen, Liquan ;
Suo, Liumin .
NATURE COMMUNICATIONS, 2023, 14 (01)
[26]   Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries [J].
Pang, Quan ;
Shyamsunder, Abhinandan ;
Narayanan, Badri ;
Kwok, Chun Yuen ;
Curtiss, Larry A. ;
Nazar, Linda F. .
NATURE ENERGY, 2018, 3 (09) :783-791
[27]   Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers [J].
Peluso, Paola ;
Chankvetadze, Bezhan .
CHEMICAL REVIEWS, 2022, 122 (16) :13235-13400
[28]   Enabling Scalable Polymer Electrolyte with Dual-Reinforced Stable Interface for 4.5 V Lithium-Metal Batteries [J].
Qi, Shengguang ;
Li, Mianrui ;
Gao, Yuqing ;
Zhang, Weifeng ;
Liu, Shumei ;
Zhao, Jianqing ;
Du, Li .
ADVANCED MATERIALS, 2023, 35 (45)
[29]   Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics [J].
Rauner, Nicolas ;
Meuris, Monika ;
Zoric, Mirjana ;
Tiller, Joerg C. .
NATURE, 2017, 543 (7645) :407-+
[30]   Chiral recognition thermodynamics of β-cyclodextrin:: The thermodynamic origin of enantioselectivity and the enthalpy-entropy compensation effect [J].
Rekharsky, M ;
Inoue, Y .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (18) :4418-4435