Molecular Design of Solid Polymer Electrolytes with Enthalpy-Entropy Manipulation for Li Metal Batteries with Aggressive Cathode Chemistry

被引:21
作者
Ye, Guo [1 ]
Zhu, Lujun [1 ]
Ma, Yue [1 ]
He, Mengxue [1 ]
Zheng, Chenxi [2 ]
Shen, Kaier [1 ]
Hong, Xufeng [1 ]
Xiao, Zhitong [1 ]
Jia, Yongfeng [1 ]
Gao, Peng [2 ]
Pang, Quanquan [1 ]
机构
[1] Peking Univ, Sch Mat Sci & Engn, Beijing Key Lab Theory & Technol Adv Battery Mat, Beijing 100871, Peoples R China
[2] Peking Univ, Int Ctr Quantum Mat, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金; 北京市自然科学基金;
关键词
LITHIUM; COMPENSATION; RECOGNITION;
D O I
10.1021/jacs.4c09062
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid polymer electrolytes (SPEs) with high ion conductivity, high Li+ transference number, and a wide electrochemical window are promising for the next-generation high-energy Li metal batteries (LMBs). Here we describe an enthalpy-entropy manipulation strategy enabling a class of polycarbonate-based copolymeric electrolytes (PCCEs) with regulated cation/anion solvation via a molecular design of the polymer backbone. By integrating a weakly solvating linear carbonate with another strongly solvating cyclic carbonate segment in the polymer backbone, the cation-dipole coordination for Li+ ions (with two types of carbonyl groups) is weakened (low enthalpy penalty) and nondirectional (high entropy penalty), which enables a weak solvation and rapid diffusion of Li+. We further introduce a bis-acrylamide-based cross-linking segment which, other than imparting high mechanical strength, exhibits dihydrogen bonding with the difluoro(oxalate) borate anions, which is strong (high enthalpy penalty) and directional (low entropy penalty), thus restricting the migration of anions. As a result, the PCCE delivers a high ionic conductivity of 0.66 mS cm(-1) with a high Li+ transference number (0.76) at 25 degrees C, as well as high oxidation stability. By an in situ polymerization approach, the PCCE enables LMBs using high-nikel LiNi0.8Co0.1Mn0.1O2 cathodes with a high capacity retention of 82.2% over 800 cycles with a cutoff voltage of 4.5 V and further LMBs using aggressive LiNi0.5Mn1.5O4 cathodes with a 96.4% capacity retention over 300 cycles with a cutoff voltage of 5.0 V. The described enthalpy-entropy manipulation approach offers a unique perspective for the molecular design of high-performance SPEs for high-energy Li metal batteries.
引用
收藏
页码:27668 / 27678
页数:11
相关论文
共 43 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Water Networks Contribute to Enthalpy/Entropy Compensation in Protein-Ligand Binding [J].
Breiten, Benjamin ;
Lockett, Matthew R. ;
Sherman, Woody ;
Fujita, Shuji ;
Al-Sayah, Mohammad ;
Lange, Heiko ;
Bowers, Carleen M. ;
Heroux, Annie ;
Krilov, Goran ;
Whitesides, George M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (41) :15579-15584
[3]   An enthalpic component in cooperativity: The relationship between enthalpy, entropy, and noncovalent structure in weak associations [J].
Calderone, CT ;
Williams, DH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (26) :6262-6267
[4]   Cationic polymer-in-salt electrolytes for fast metal ion conduction and solid-state battery applications [J].
Chen, Fangfang ;
Wang, Xiaoen ;
Armand, Michel ;
Forsyth, Maria .
NATURE MATERIALS, 2022, 21 (10) :1175-+
[5]   Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery [J].
Chen, Yuqing ;
He, Qiu ;
Zhao, Yun ;
Zhou, Wang ;
Xiao, Peitao ;
Gao, Peng ;
Tavajohi, Naser ;
Tu, Jian ;
Li, Baohua ;
He, Xiangming ;
Xing, Lidan ;
Fan, Xiulin ;
Liu, Jilei .
NATURE COMMUNICATIONS, 2023, 14 (01)
[6]   Hydrogen Bonding Enables Polymer Hydrogels with pH-Induced Reversible Dynamic Responsive Behaviors [J].
Cheng, Ruidong ;
Xu, Mingwei ;
Zhang, Xuehui ;
Jiang, Jinqiang ;
Zhang, Qiuyu ;
Zhao, Yue .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (23)
[7]   Non-Solvating and Low-Dielectricity Cosolvent for Anion-Derived Solid Electrolyte Interphases in Lithium Metal Batteries [J].
Ding, Jun-Fan ;
Xu, Rui ;
Yao, Nan ;
Chen, Xiang ;
Xiao, Ye ;
Yao, Yu-Xing ;
Yan, Chong ;
Xie, Jin ;
Huang, Jia-Qi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (20) :11442-11447
[8]   Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries [J].
Fan, Xiulin ;
Chen, Long ;
Borodin, Oleg ;
Ji, Xiao ;
Chen, Ji ;
Hou, Singyuk ;
Deng, Tao ;
Zheng, Jing ;
Yang, Chongyin ;
Liou, Sz-Chian ;
Amine, Khalil ;
Xu, Kang ;
Wang, Chunsheng .
NATURE NANOTECHNOLOGY, 2018, 13 (08) :715-+
[9]   Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions [J].
Gao, Yue ;
Yan, Zhifei ;
Gray, Jennifer L. ;
He, Xin ;
Wang, Daiwei ;
Chen, Tianhang ;
Huang, Qingquan ;
Li, Yuguang C. ;
Wang, Haiying ;
Kim, Seong H. ;
Mallouk, Thomas E. ;
Wang, Donghai .
NATURE MATERIALS, 2019, 18 (04) :384-+
[10]   Resolving nanostructure and chemistry of solid-electrolyte interphase on lithium anodes by depth-sensitive plasmon-enhanced Raman spectroscopy [J].
Gu, Yu ;
You, En-Ming ;
Lin, Jian-De ;
Wang, Jun-Hao ;
Luo, Si-Heng ;
Zhou, Ru-Yu ;
Zhang, Chen-Jie ;
Yao, Jian-Lin ;
Li, Hui-Yang ;
Li, Gen ;
Wang, Wei-Wei ;
Qiao, Yu ;
Yan, Jia-Wei ;
Wu, De-Yin ;
Liu, Guo-Kun ;
Zhang, Li ;
Li, Jian-Feng ;
Xu, Rong ;
Tian, Zhong-Qun ;
Cui, Yi ;
Mao, Bing-Wei .
NATURE COMMUNICATIONS, 2023, 14 (01)