K-theoretic Gromov-Witten invariants of line degrees on flag varieties

被引:0
作者
Buch, Anders S. [1 ]
Chen, Linda [2 ]
Xu, Weihong [3 ]
机构
[1] Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Swarthmore Coll, Dept Math & Stat, 500 Coll Ave, Swarthmore, PA 19081 USA
[3] CALTECH, Div Phys Math & Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2024年 / 39卷 / 33期
关键词
Gromov-Witten invariants; flag varieties; big quantum K-theory; QUANTUM COHOMOLOGY;
D O I
10.1142/S0217751X24460138
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A homology class d is an element of H-2(X, Z) of a complex flag variety X = G/P is called a line degree if the moduli space M-0,M-0(X, d) of 0-pointed stable maps to X of degree d is also a flag variety G/P '. We prove a quantum equals classical formula stating that any n-pointed (equivariant, K-theoretic, genus zero) Gromov-Witten invariant of line degree on X is equal to a classical intersection number computed on the flag variety G/P '. We also prove an n-pointed analogue of the Peterson comparison formula stating that these invariants coincide with Gromov-Witten invariants of the variety of complete flags G/B. Our formulas make it straightforward to compute the big quantum K-theory ring QK(big)(X) modulo the ideal < Q(d)> generated by degrees d larger than line degrees.
引用
收藏
页数:11
相关论文
共 23 条
[1]   QUANTUM K-THEORY OF GRASSMANNIANS [J].
Buch, Anders S. ;
Mihalcea, Leonardo C. .
DUKE MATHEMATICAL JOURNAL, 2011, 156 (03) :501-538
[2]   Quantum Pieri rules for isotropic Grassmannians [J].
Buch, Anders Skovsted ;
Kresch, Andrew ;
Tamvakis, Harry .
INVENTIONES MATHEMATICAE, 2009, 178 (02) :345-405
[3]   Quantum cohomology of grassmannians [J].
Buch, AS .
COMPOSITIO MATHEMATICA, 2003, 137 (02) :227-235
[4]   Gromov-Witten invariants on Grassmannians [J].
Buch, AS ;
Kresch, A ;
Tamvakis, H .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (04) :901-915
[5]   Quantum cohomology of minuscule homogeneous spaces [J].
Chaput, P. E. ;
Manivel, L. ;
Perrin, N. .
TRANSFORMATION GROUPS, 2008, 13 (01) :47-89
[6]   RATIONALITY OF SOME GROMOV-WITTEN VARIETIES AND APPLICATION TO QUANTUM K-THEORY [J].
Chaput, P. -E. ;
Perrin, N. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (01) :67-90
[7]  
Chen L, 2024, TRANSFORM GROUPS, V29, P561, DOI 10.1007/s00031-022-09752-6
[8]   Lie incidence systems from projective varieties [J].
Cohen, AM ;
Cooperstein, BN .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (07) :2095-2102
[9]  
Edidin D, 2000, DUKE MATH J, V102, P567
[10]  
FULTON W, 1997, P S PURE MATH 2, V62, P45