K-theoretic Gromov-Witten invariants of line degrees on flag varieties

被引:0
作者
Buch, Anders S. [1 ]
Chen, Linda [2 ]
Xu, Weihong [3 ]
机构
[1] Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Swarthmore Coll, Dept Math & Stat, 500 Coll Ave, Swarthmore, PA 19081 USA
[3] CALTECH, Div Phys Math & Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2024年 / 39卷 / 33期
关键词
Gromov-Witten invariants; flag varieties; big quantum K-theory; QUANTUM COHOMOLOGY;
D O I
10.1142/S0217751X24460138
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A homology class d is an element of H-2(X, Z) of a complex flag variety X = G/P is called a line degree if the moduli space M-0,M-0(X, d) of 0-pointed stable maps to X of degree d is also a flag variety G/P '. We prove a quantum equals classical formula stating that any n-pointed (equivariant, K-theoretic, genus zero) Gromov-Witten invariant of line degree on X is equal to a classical intersection number computed on the flag variety G/P '. We also prove an n-pointed analogue of the Peterson comparison formula stating that these invariants coincide with Gromov-Witten invariants of the variety of complete flags G/B. Our formulas make it straightforward to compute the big quantum K-theory ring QK(big)(X) modulo the ideal < Q(d)> generated by degrees d larger than line degrees.
引用
收藏
页数:11
相关论文
共 23 条
  • [1] QUANTUM K-THEORY OF GRASSMANNIANS
    Buch, Anders S.
    Mihalcea, Leonardo C.
    [J]. DUKE MATHEMATICAL JOURNAL, 2011, 156 (03) : 501 - 538
  • [2] Quantum Pieri rules for isotropic Grassmannians
    Buch, Anders Skovsted
    Kresch, Andrew
    Tamvakis, Harry
    [J]. INVENTIONES MATHEMATICAE, 2009, 178 (02) : 345 - 405
  • [3] Quantum cohomology of grassmannians
    Buch, AS
    [J]. COMPOSITIO MATHEMATICA, 2003, 137 (02) : 227 - 235
  • [4] Gromov-Witten invariants on Grassmannians
    Buch, AS
    Kresch, A
    Tamvakis, H
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (04) : 901 - 915
  • [5] Quantum cohomology of minuscule homogeneous spaces
    Chaput, P. E.
    Manivel, L.
    Perrin, N.
    [J]. TRANSFORMATION GROUPS, 2008, 13 (01) : 47 - 89
  • [6] RATIONALITY OF SOME GROMOV-WITTEN VARIETIES AND APPLICATION TO QUANTUM K-THEORY
    Chaput, P. -E.
    Perrin, N.
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (01) : 67 - 90
  • [7] Chen L, 2024, TRANSFORM GROUPS, V29, P561, DOI 10.1007/s00031-022-09752-6
  • [8] Lie incidence systems from projective varieties
    Cohen, AM
    Cooperstein, BN
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (07) : 2095 - 2102
  • [9] Edidin D, 2000, DUKE MATH J, V102, P567
  • [10] Fulton W., 1997, Proc. Sympos. Pure Math, V62, P45