Two-Dimensional Phototransistors with van der Waals Superstructure Contacts for High-Performance Photosensing

被引:0
|
作者
Siao, Ming-Deng [1 ]
Tsai, Meng-Yu [1 ,2 ]
Gandhi, Ashish Chhaganlal [1 ]
Wu, Yi-Chung [1 ]
Fan, Ta [1 ]
Hao, Li-Syuan [3 ]
Li, I-Ling [5 ]
Chen, Sun-Zen [4 ]
Liu, Chang-Hua [1 ]
Lin, Yen-Fu [2 ]
Yeh, Chao-Hui [1 ,5 ,6 ]
机构
[1] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu 30013, Taiwan
[2] Natl Chung Hsing Univ, Dept Phys, Taichung 40227, Taiwan
[3] Natl Tsing Hua Univ, Inst Elect Engn, Hsinchu 30013, Taiwan
[4] Natl Tsing Hua Univ, Ctr Nanotechnol Mat Sci & Microsyst, Hsinchu 30013, Taiwan
[5] Natl Tsing Hua Univ, Coll Semicond Res, Hsinchu 30013, Taiwan
[6] Natl Tsing Hua Univ, Inst Elect Engn, Ctr Nanotechnol Mat Sci & Microsyst, Hsinchu 30013, Taiwan
关键词
transition metal dichalcogenides; 2D phototransistors; photodetection; alternatingWS(2)-WSe2 strip superstructure; type-II staggered band alignment; optoelectronics; LARGE-AREA; CHARGE-TRANSFER; WS2; PHOTODETECTOR; HETEROSTRUCTURE; RESPONSIVITY; ULTRAFAST; MOS2;
D O I
10.1021/acsami.4c16883
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Semiconducting transition metal dichalcogenides (TMDs) possess exceptional photoelectronic properties, rendering them excellent channel materials for phototransistors and holding great promise for future optoelectronics. However, the attainment of high-performance photodetection has been impeded by challenges pertaining to electrical contact. To surmount this obstacle, we introduce a phototransistor architecture, in which the WS2 channel is connected with an alternating WS2-WSe2 strip superstructure, strategically positioned alongside the source and drain contact regions. Illumination triggers efficient separation of photoexcited electrons and holes due to the type-II staggered band alignment within the superstructure. Consequently, the contact regions exhibit degenerately doped n(+) WS2 and p(+) WSe2 strips under light illumination, resulting in minimal contact resistivity with the metal electrodes. The resultant WS2 phototransistor exhibits a remarkable responsivity of 2.4 x 10(6) mA/W and an impressive detectivity of 2.6 x 10(12) Jones. Furthermore, our time-resolved measurements reveal the absence of persistent photoconductance. This proposed phototransistor architecture provides a route for high-performance photodetection, effectively surpassing previous limitations associated with electrical contact.
引用
收藏
页码:6521 / 6529
页数:9
相关论文
共 50 条
  • [21] High-Performance Devices Based on InSe-In1-xGaxSe Van der Waals Heterojunctions
    Yu, Miaomiao
    Hu, Yunxia
    Gao, Feng
    Dai, Mingjin
    Wang, Lifeng
    Hu, PingAn
    Feng, Wei
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (22) : 24978 - 24983
  • [22] van der Waals Epitaxial Growth of Borophene on a Mica Substrate toward a High-Performance Photodetector
    Wu, Zenghui
    Tai, Guoan
    Liu, Runsheng
    Hou, Chuang
    Shao, Wei
    Liang, Xinchao
    Wu, Zitong
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (27) : 31808 - 31815
  • [23] Scalable van der Waals Heterojunctions for High-Performance Photodetectors
    Yeh, Chao-Hui
    Liang, Zheng-Yong
    Lin, Yung-Chang
    Wu, Tien-Lin
    Fan, Ta
    Chu, Yu-Chen
    Ma, Chun-Hao
    Liu, Yu-Chen
    Chu, Ying-Hao
    Suenaga, Kazutomo
    Chiu, Po-Wen
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (41) : 36181 - 36188
  • [24] 2D van der Waals Heterojunction of Organic and Inorganic Monolayers for High Responsivity Phototransistors
    Zhao, Baolin
    Gan, Ziyang
    Johnson, Manuel
    Najafidehaghani, Emad
    Rejek, Tobias
    George, Antony
    Fink, Rainer H.
    Turchanin, Andrey
    Halik, Marcus
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (42)
  • [25] Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids
    Das, Saptarshi
    Robinson, Joshua A.
    Dubey, Madan
    Terrones, Humberto
    Terrones, Mauricio
    ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 45, 2015, 45 : 1 - 27
  • [26] van der Waals epitaxy and photoresponse of two-dimensional CdSe plates
    Zhu, Dan-Dan
    Xia, Jing
    Wang, Lei
    Li, Xuan-Ze
    Tian, Li-Feng
    Meng, Xiang-Min
    NANOSCALE, 2016, 8 (22) : 11375 - 11379
  • [27] Insight into the Effect of h-BN Modification on the Performance of MoS2 Phototransistors with van der Waals Contacts
    Huang, Fobao
    Yang, Qingyuan
    Sun, Yiyao
    Chen, Jianghua
    Liu, Chunxiao
    Chao, Yong
    Hu, Junjun
    Hu, Gongwei
    Huang, Wei
    ACS APPLIED NANO MATERIALS, 2025, 8 (11) : 5805 - 5814
  • [28] Achieving nearly barrier free transport in high mobility ReS2 phototransistors with van der Waals contacts
    Mukherjee, Shubhrasish
    Samanta, Gaurab
    Hasan, Md Nur
    Moulick, Shubhadip
    Kulkarni, Ruta
    Watanabe, Kenji
    Taniguchi, Takashi
    Thamizhavel, Arumugum
    Karmakar, Debjani
    Pal, Atindra Nath
    NPJ 2D MATERIALS AND APPLICATIONS, 2024, 8 (01)
  • [29] Toward High-Performance Self-Driven Photodetectors via Multistacking Van der Waals Heterostructures
    Guo, Shuai
    Chen, Zhuo
    Weller, Dieter
    Wang, Xianshuang
    Ding, Chunjie
    Wang, Yingying
    Liu, Ruibin
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (47) : 56438 - 56445
  • [30] Noninvasive Photodelamination of van der Waals Semiconductors for High-Performance Electronics
    Xu, Ning
    Pei, Xudong
    Qiu, Lipeng
    Zhan, Li
    Wang, Peng
    Shi, Yi
    Li, Songlin
    ADVANCED MATERIALS, 2023, 35 (25)