Two-Dimensional Phototransistors with van der Waals Superstructure Contacts for High-Performance Photosensing

被引:0
|
作者
Siao, Ming-Deng [1 ]
Tsai, Meng-Yu [1 ,2 ]
Gandhi, Ashish Chhaganlal [1 ]
Wu, Yi-Chung [1 ]
Fan, Ta [1 ]
Hao, Li-Syuan [3 ]
Li, I-Ling [5 ]
Chen, Sun-Zen [4 ]
Liu, Chang-Hua [1 ]
Lin, Yen-Fu [2 ]
Yeh, Chao-Hui [1 ,5 ,6 ]
机构
[1] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu 30013, Taiwan
[2] Natl Chung Hsing Univ, Dept Phys, Taichung 40227, Taiwan
[3] Natl Tsing Hua Univ, Inst Elect Engn, Hsinchu 30013, Taiwan
[4] Natl Tsing Hua Univ, Ctr Nanotechnol Mat Sci & Microsyst, Hsinchu 30013, Taiwan
[5] Natl Tsing Hua Univ, Coll Semicond Res, Hsinchu 30013, Taiwan
[6] Natl Tsing Hua Univ, Inst Elect Engn, Ctr Nanotechnol Mat Sci & Microsyst, Hsinchu 30013, Taiwan
关键词
transition metal dichalcogenides; 2D phototransistors; photodetection; alternatingWS(2)-WSe2 strip superstructure; type-II staggered band alignment; optoelectronics; LARGE-AREA; CHARGE-TRANSFER; WS2; PHOTODETECTOR; HETEROSTRUCTURE; RESPONSIVITY; ULTRAFAST; MOS2;
D O I
10.1021/acsami.4c16883
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Semiconducting transition metal dichalcogenides (TMDs) possess exceptional photoelectronic properties, rendering them excellent channel materials for phototransistors and holding great promise for future optoelectronics. However, the attainment of high-performance photodetection has been impeded by challenges pertaining to electrical contact. To surmount this obstacle, we introduce a phototransistor architecture, in which the WS2 channel is connected with an alternating WS2-WSe2 strip superstructure, strategically positioned alongside the source and drain contact regions. Illumination triggers efficient separation of photoexcited electrons and holes due to the type-II staggered band alignment within the superstructure. Consequently, the contact regions exhibit degenerately doped n(+) WS2 and p(+) WSe2 strips under light illumination, resulting in minimal contact resistivity with the metal electrodes. The resultant WS2 phototransistor exhibits a remarkable responsivity of 2.4 x 10(6) mA/W and an impressive detectivity of 2.6 x 10(12) Jones. Furthermore, our time-resolved measurements reveal the absence of persistent photoconductance. This proposed phototransistor architecture provides a route for high-performance photodetection, effectively surpassing previous limitations associated with electrical contact.
引用
收藏
页码:6521 / 6529
页数:9
相关论文
共 50 条
  • [21] Two-dimensional perovskite oxide high-κ dielectric for high-performance phototransistors
    Liu, Zhongfan
    SCIENCE BULLETIN, 2024, 69 (13) : 2001 - 2003
  • [22] Multifunctional high-performance van der Waals heterostructures
    Mingqiang Huang
    Shengman Li
    Zhenfeng Zhang
    Xiong Xiong
    Xuefei Li
    Yanqing Wu
    Nature Nanotechnology, 2017, 12 : 1148 - 1154
  • [23] Multifunctional high-performance van der Waals heterostructures
    Huang, Mingqiang
    Li, Shengman
    Zhang, Zhenfeng
    Xiong, Xiong
    Li, Xuefei
    Wu, Yanqing
    NATURE NANOTECHNOLOGY, 2017, 12 (12) : 1148 - +
  • [24] Van der Waals Metal-Semiconductor Contacts for High-Performance Polymer FieldEffect Transistors
    Lai, Xilin
    Zhao, Chunyan
    Huang, Ru
    He, Ming
    2023 7TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM, 2023,
  • [25] Two-dimensional capillaries assembled by van der Waals heterostructures
    Ma, Jiaojiao
    Guan, Kaiwen
    Jiang, Yu
    Cao, Yang
    Hu, Sheng
    NANO RESEARCH, 2023, 16 (03) : 4119 - 4129
  • [26] Photocurrent generation with two-dimensional van der Waals semiconductors
    Buscema, Michele
    Island, Joshua O.
    Groenendijk, Dirk J.
    Blanter, Sofya I.
    Steele, Gary A.
    van der Zant, Herre S. J.
    Castellanos-Gomez, Andres
    CHEMICAL SOCIETY REVIEWS, 2015, 44 (11) : 3691 - 3718
  • [27] A Polycarbonate-Assisted Transfer Method for van der Waals Contacts to Magnetic Two-Dimensional Materials
    Yang, Kunlin
    Zhao, Guorui
    Zhao, Yibin
    Xiao, Jie
    Wang, Le
    Liu, Jiaqi
    Song, Wenqing
    Lan, Qing
    Zhao, Tuoyu
    Huang, Hai
    Mei, Jia-Wei
    Shi, Wu
    MICROMACHINES, 2024, 15 (11)
  • [28] Recent advances in two-dimensional van der Waals magnets
    Xu, Hang
    Xu, Shengjie
    Xu, Xun
    Zhuang, Jincheng
    Hao, Weichang
    Du, Yi
    MICROSTRUCTURES, 2022, 2 (02):
  • [29] Two-Dimensional Van Der Waals Thin Film and Device
    Liao, Liping
    Kovalska, Evgeniya
    Regner, Jakub
    Song, Qunliang
    Sofer, Zdenek
    SMALL, 2024, 20 (04)
  • [30] The Magnetic Genome of Two-Dimensional van der Waals Materials
    Wang, Qing Hua
    Bedoya-Pinto, Amilcar
    Blei, Mark
    Dismukes, Avalon H.
    Hamo, Assaf
    Jenkins, Sarah
    Koperski, Maciej
    Liu, Yu
    Sun, Qi-Chao
    Telford, Evan J.
    Kim, Hyun Ho
    Augustin, Mathias
    Vool, Uri
    Yin, Jia-Xin
    Li, Lu Hua
    Falin, Alexey
    Dean, Cory R.
    Casanova, Felix
    Evans, Richard F. L.
    Chshiev, Mairbek
    Mishchenko, Artem
    Petrovic, Cedomir
    He, Rui
    Zhao, Liuyan
    Tsen, Adam W.
    Gerardot, Brian D.
    Brotons-Gisbert, Mauro
    Guguchia, Zurab
    Roy, Xavier
    Tongay, Sefaattin
    Wang, Ziwei
    Hasan, M. Zahid
    Wrachtrup, Joerg
    Yacoby, Amir
    Fert, Albert
    Parkin, Stuart
    Novoselov, Kostya S.
    Dai, Pengcheng
    Balicas, Luis
    Santos, Elton J. G.
    ACS NANO, 2022, 16 (05) : 6960 - 7079