Two-Dimensional Phototransistors with van der Waals Superstructure Contacts for High-Performance Photosensing

被引:0
|
作者
Siao, Ming-Deng [1 ]
Tsai, Meng-Yu [1 ,2 ]
Gandhi, Ashish Chhaganlal [1 ]
Wu, Yi-Chung [1 ]
Fan, Ta [1 ]
Hao, Li-Syuan [3 ]
Li, I-Ling [5 ]
Chen, Sun-Zen [4 ]
Liu, Chang-Hua [1 ]
Lin, Yen-Fu [2 ]
Yeh, Chao-Hui [1 ,5 ,6 ]
机构
[1] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu 30013, Taiwan
[2] Natl Chung Hsing Univ, Dept Phys, Taichung 40227, Taiwan
[3] Natl Tsing Hua Univ, Inst Elect Engn, Hsinchu 30013, Taiwan
[4] Natl Tsing Hua Univ, Ctr Nanotechnol Mat Sci & Microsyst, Hsinchu 30013, Taiwan
[5] Natl Tsing Hua Univ, Coll Semicond Res, Hsinchu 30013, Taiwan
[6] Natl Tsing Hua Univ, Inst Elect Engn, Ctr Nanotechnol Mat Sci & Microsyst, Hsinchu 30013, Taiwan
关键词
transition metal dichalcogenides; 2D phototransistors; photodetection; alternatingWS(2)-WSe2 strip superstructure; type-II staggered band alignment; optoelectronics; LARGE-AREA; CHARGE-TRANSFER; WS2; PHOTODETECTOR; HETEROSTRUCTURE; RESPONSIVITY; ULTRAFAST; MOS2;
D O I
10.1021/acsami.4c16883
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Semiconducting transition metal dichalcogenides (TMDs) possess exceptional photoelectronic properties, rendering them excellent channel materials for phototransistors and holding great promise for future optoelectronics. However, the attainment of high-performance photodetection has been impeded by challenges pertaining to electrical contact. To surmount this obstacle, we introduce a phototransistor architecture, in which the WS2 channel is connected with an alternating WS2-WSe2 strip superstructure, strategically positioned alongside the source and drain contact regions. Illumination triggers efficient separation of photoexcited electrons and holes due to the type-II staggered band alignment within the superstructure. Consequently, the contact regions exhibit degenerately doped n(+) WS2 and p(+) WSe2 strips under light illumination, resulting in minimal contact resistivity with the metal electrodes. The resultant WS2 phototransistor exhibits a remarkable responsivity of 2.4 x 10(6) mA/W and an impressive detectivity of 2.6 x 10(12) Jones. Furthermore, our time-resolved measurements reveal the absence of persistent photoconductance. This proposed phototransistor architecture provides a route for high-performance photodetection, effectively surpassing previous limitations associated with electrical contact.
引用
收藏
页码:6521 / 6529
页数:9
相关论文
共 50 条
  • [1] Photodetectors Based on Two-Dimensional Materials and Their van der Waals Heterostructures
    Li Jiayi
    Ding Yi
    Zhang, David Wei
    Zhou Peng
    ACTA PHYSICO-CHIMICA SINICA, 2019, 35 (10) : 1058 - 1077
  • [2] Metal Films on Two-Dimensional Materials: van der Waals Contacts and Raman Enhancement
    Ghani, Maheera Abdul
    Sarkar, Soumya
    Lee, Jung-In
    Zhu, Yiru
    Yan, Han
    Wang, Yan
    Chhowalla, Manish
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (06) : 7399 - 7405
  • [3] Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors
    Wang, Yan
    Kim, Jong Chan
    Wu, Ryan J.
    Martinez, Jenny
    Song, Xiuju
    Yang, Jieun
    Zhao, Fang
    Mkhoyan, K. Andre
    Jeong, Hu Young
    Chhowalla, Manish
    NATURE, 2019, 568 (7750) : 70 - +
  • [4] Transfer assembly for two-dimensional van der Waals heterostructures
    Fan, Sidi
    Vu, Quoc An
    Tran, Minh Dao
    Adhikari, Subash
    Lee, Young Hee
    2D MATERIALS, 2020, 7 (02):
  • [5] Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors
    Yang, Allen Jian
    Han, Kun
    Huang, Ke
    Ye, Chen
    Wen, Wen
    Zhu, Ruixue
    Zhu, Rui
    Xu, Jun
    Yu, Ting
    Gao, Peng
    Xiong, Qihua
    Renshaw Wang, X.
    NATURE ELECTRONICS, 2022, 5 (04) : 233 - 240
  • [6] Excitons in two-dimensional van der Waals heterostructures
    Liu, Hao
    Zong, Yixin
    Wang, Pan
    Wen, Hongyu
    Wu, Haibin
    Xia, Jianbai
    Wei, Zhongming
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (05)
  • [7] Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures
    Lee, Jae Yoon
    Shin, Jun-Hwan
    Lee, Gwan-Hyoung
    Lee, Chul-Ho
    NANOMATERIALS, 2016, 6 (11)
  • [8] Van der Waals organic/inorganic heterostructures in the two-dimensional limit
    Xu, Xiaomin
    Lou, Ziru
    Cheng, Simin
    Chow, Philip C. Y.
    Koch, Norbert
    Cheng, Hui-Ming
    CHEM, 2021, 7 (11): : 2989 - 3026
  • [9] Two-Dimensional Van Der Waals Thin Film and Device
    Liao, Liping
    Kovalska, Evgeniya
    Regner, Jakub
    Song, Qunliang
    Sofer, Zdenek
    SMALL, 2024, 20 (04)
  • [10] The Magnetic Genome of Two-Dimensional van der Waals Materials
    Wang, Qing Hua
    Bedoya-Pinto, Amilcar
    Blei, Mark
    Dismukes, Avalon H.
    Hamo, Assaf
    Jenkins, Sarah
    Koperski, Maciej
    Liu, Yu
    Sun, Qi-Chao
    Telford, Evan J.
    Kim, Hyun Ho
    Augustin, Mathias
    Vool, Uri
    Yin, Jia-Xin
    Li, Lu Hua
    Falin, Alexey
    Dean, Cory R.
    Casanova, Felix
    Evans, Richard F. L.
    Chshiev, Mairbek
    Mishchenko, Artem
    Petrovic, Cedomir
    He, Rui
    Zhao, Liuyan
    Tsen, Adam W.
    Gerardot, Brian D.
    Brotons-Gisbert, Mauro
    Guguchia, Zurab
    Roy, Xavier
    Tongay, Sefaattin
    Wang, Ziwei
    Hasan, M. Zahid
    Wrachtrup, Joerg
    Yacoby, Amir
    Fert, Albert
    Parkin, Stuart
    Novoselov, Kostya S.
    Dai, Pengcheng
    Balicas, Luis
    Santos, Elton J. G.
    ACS NANO, 2022, 16 (05) : 6960 - 7079