A note on the topological synchronization of unimodal maps

被引:0
|
作者
Gianfelice, Michele [1 ]
机构
[1] Univ Calabria, Dipartimento Matemat & Informat, Campus Arcavacata,Ponte P Bucci Cubo 30B, I-87036 Arcavacata Di Rende, CS, Italy
关键词
coupled dynamical systems; unimodal maps; master-slave system; Markov chains; random dynamical systems; topological synchronisation;
D O I
10.1088/1361-6544/ad95d5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we complete the analysis carried on in Caby et al (2023 Nonlinearity36 3603-21) about the topological synchronisation of unimodal maps of the interval coupled in a master-slave configuration, by answering to the questions raised in that Paper. Namely, we compute the weak limits of the invariant measure of the coupled system as the coupling strength k is an element of ( 0 , 1 ) tends to 0 and to 1 and discuss the uniqueness of the invariant measure of its random dynamical system counterpart, proving that the convergence of the associated Markov chain to its unique stationary measure is geometric.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] COMPUTING THE TOPOLOGICAL ENTROPY OF UNIMODAL MAPS
    Dilao, Rui
    Amigo, Jose
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (06):
  • [2] A note on chaotic unimodal maps and applications
    Zhou, C. T.
    He, X. T.
    Yu, M. Y.
    Chew, L. Y.
    Wang, X. G.
    CHAOS, 2006, 16 (03)
  • [3] A NOTE ON THE UNIMODAL FEIGENBAUM'S MAPS
    Huang, Guifeng
    Wang, Lidong
    Liao, Gongfu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (14): : 3101 - 3111
  • [4] Topological properties of Lorenz maps derived from unimodal maps
    Anusic, Ana
    Bruin, Henk
    Cinc, Jernej
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (08) : 1174 - 1191
  • [5] THE TOPOLOGICAL COMPLEXITY OF CANTOR ATTRACTORS FOR UNIMODAL INTERVAL MAPS
    Li, Simin
    Shen, Weixiao
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (01) : 659 - 688
  • [6] Computing topological entropy for periodic sequences of unimodal maps
    Canovas, Jose S.
    Munoz Guillermo, Maria
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) : 3119 - 3127
  • [7] A Note on Topological Entropy of Maps
    曾凡平
    Northeastern Mathematical Journal, 1997, (04) : 477 - 481
  • [8] TOPOLOGICAL CONDITIONS OF THE EXISTENCE OF INVARIANT-MEASURES FOR UNIMODAL MAPS
    BRUIN, H
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1994, 14 : 433 - 451
  • [9] Topological and metrical conditions for Collet-Eckmann unimodal maps
    Wang Lanyu
    Acta Mathematicae Applicatae Sinica, 2001, 17 (3) : 350 - 360
  • [10] SINGULARITY OF TOPOLOGICAL CONJUGACIES BETWEEN CERTAIN UNIMODAL MAPS OF THE INTERVAL
    PROPPE, H
    BYERS, W
    BOYARSKY, A
    ISRAEL JOURNAL OF MATHEMATICS, 1983, 44 (04) : 277 - 288