Segmentation of infarct lesions and prognosis prediction for acute ischemic stroke using non-contrast CT scans

被引:1
作者
Wang, Xuechun [1 ]
Meng, Yuting [2 ,3 ]
Dong, Zhijian [4 ]
Cao, Zehong [1 ]
He, Yichu [1 ]
Sun, Tianyang [1 ]
Zhou, Qing [1 ]
Niu, Guozhong [3 ]
Ding, Zhongxiang [2 ]
Shi, Feng [1 ]
Shen, Dinggang [1 ,5 ,6 ]
机构
[1] Shanghai United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai, Peoples R China
[2] Zhejiang Univ, Affiliated Hangzhou Peoples Hosp 1, Sch Med, Dept Radiol, Hangzhou, Peoples R China
[3] Zhejiang Univ, Sch Med, Affiliated Hangzhou Peoples Hosp 1, Dept Neurol, Hangzhou, Peoples R China
[4] Xian Gaoxin Hosp, Dept Nucl Med, Xian, Shaanxi, Peoples R China
[5] ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
[6] Shanghai Clin Res & Trial Ctr, Shanghai, Peoples R China
关键词
Non-contrast CT; Ischemic stroke; Neural network; Patient triage; Prognosis prediction; THROMBECTOMY; TRIAGE; TIME;
D O I
10.1016/j.cmpb.2024.108488
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and Purpose: Ischemic stroke is the most common type of stroke and the second leading cause of global mortality. Prompt and accurate diagnosis is crucial for effective treatment. Non-contrast CT (NCCT) scans are commonly employed as the first-line imaging modality to identify the infarct lesion and affected brain areas, as well as to make prognostic predictions to guide the subsequent treatment planning. However, visual evaluation of infarct lesions in NCCT scans can be subjective and inconsistent due to reliance on expert experience. Methods: In this study, we propose an automatic method using VB-Net with dual-channel inputs to segment acute infarct lesions (AIL) on NCCT scans and extract affected ASPECTS (Alberta Stroke Program Early CT Score) regions. Secondly, we establish a prediction model to distinguish reperfused patients from non-reperfused patients after treatment, based on multi-dimensional radiological features of baseline NCCT and stroke onset time. Thirdly, we create a prediction model estimating the infarct volume after a period of time, by combining NCCT infarct volume, radiological features, and surgical decision. Results: The median Dice coefficient of the AIL segmentation network is 0.76. Based on this, the patient triage model has an AUC of 0.837 (95 % confidence interval [CI]: 0.734-0.941), sensitivity of 0.833 (95 % CI: 0.626-0.953). The predicted follow-up infarct volume correlates strongly with the DWI ground truth, with a Pearson correlation coefficient of 0.931. Conclusions: Our proposed pipeline offers qualitative and quantitative assessment of infarct lesions based on NCCT scans, facilitating physicians in patient triage and prognosis prediction.
引用
收藏
页数:10
相关论文
共 35 条
[1]   Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging [J].
Albers, G. W. ;
Marks, M. P. ;
Kemp, S. ;
Christensen, S. ;
Tsai, J. P. ;
Ortega-Gutierrez, S. ;
McTaggart, R. A. ;
Torbey, M. T. ;
Kim-Tenser, M. ;
Leslie-Mazwi, T. ;
Sarraj, A. ;
Kasner, S. E. ;
Ansari, S. A. ;
Yeatts, S. D. ;
Hamilton, S. ;
Mlynash, M. ;
Heit, J. J. ;
Zaharchuk, G. ;
Kim, S. ;
Carrozzella, J. ;
Palesch, Y. Y. ;
Demchuk, A. M. ;
Bammer, R. ;
Lavori, P. W. ;
Broderick, J. P. ;
Lansberg, M. G. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (08) :708-718
[2]   A Randomized Trial of Intraarterial Treatment for Acute Ischemic Stroke [J].
Berkhemer, O. A. ;
Fransen, P. S. S. ;
Beumer, D. ;
van den Berg, L. A. ;
Lingsma, H. F. ;
Yoo, A. J. ;
Schonewille, W. J. ;
Vos, J. A. ;
Nederkoorn, P. J. ;
Wermer, M. J. H. ;
van Walderveen, M. A. A. ;
Staals, J. ;
Hofmeijer, J. ;
van Oostayen, J. A. ;
Nijeholt, G. J. Lycklama A. ;
Boiten, J. ;
Brouwer, P. A. ;
Emmer, B. J. ;
de Bruijn, S. F. ;
van Dijk, L. C. ;
Kappelle, L. J. ;
Lo, R. H. ;
Van Dijk, E. J. ;
de Vries, J. ;
de Kort, P. L. M. ;
van Rooij, W. J. J. ;
van den Berg, J. S. P. ;
van Hasselt, B. A. A. M. ;
Aerden, L. A. M. ;
Dallinga, R. J. ;
Visser, M. C. ;
Bot, J. C. J. ;
Vroomen, P. C. ;
Eshghi, O. ;
Schreuder, T. H. C. M. L. ;
Heijboer, R. J. J. ;
Keizer, K. ;
Tielbeek, A. V. ;
den Hertog, H. M. ;
Gerrits, D. G. ;
van den Berg-Vos, R. M. ;
Karas, G. B. ;
Steyerberg, E. W. ;
Flach, H. Z. ;
Marquering, H. A. ;
Sprengers, M. E. S. ;
Jenniskens, S. F. M. ;
Beenen, L. F. M. ;
van den Berg, R. ;
Koudstaal, P. J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (01) :11-20
[3]   Improving the diagnosis of acute ischemic stroke on non-contrast CT using deep learning: a multicenter study [J].
Chen, Weidao ;
Wu, Jiangfen ;
Wei, Ren ;
Wu, Shuang ;
Xia, Chen ;
Wang, Dawei ;
Liu, Daliang ;
Zheng, Longmei ;
Zou, Tianyu ;
Li, Ruijiang ;
Qi, Xianrong ;
Zhang, Xiaotong .
INSIGHTS INTO IMAGING, 2022, 13 (01)
[4]   Impact of the reperfusion status for predicting the final stroke infarct using deep learning [J].
Debs, Noelie ;
Cho, Tae-Hee ;
Rousseau, David ;
Berthezene, Yves ;
Buisson, Marielle ;
Eker, Omer ;
Mechtouff, Laura ;
Nighoghossian, Norbert ;
Ovize, Michel ;
Frindel, Carole .
NEUROIMAGE-CLINICAL, 2021, 29
[5]   Early CT changes in patients admitted for thrombectomy Intrarater and interrater agreement [J].
Farzin, Behzad ;
Fahed, Robert ;
Guilbert, Francois ;
Poppe, Alexandre Y. ;
Daneault, Nicole ;
Durocher, Andre P. ;
Lanthier, Sylvain ;
Boudjani, Hayet ;
Khoury, Naim N. ;
Roy, Daniel ;
Weill, Alain ;
Gentric, Jean-Christophe ;
Batista, Andre L. ;
Letourneau-Guillon, Laurent ;
Bergeron, Francois ;
Henry, Marc-Antoine ;
Darsaut, Tim E. ;
Raymond, Jean .
NEUROLOGY, 2016, 87 (03) :249-256
[6]   Head CT deep learning model is highly accurate for early infarct estimation [J].
Gauriau, Romane ;
Bizzo, Bernardo C. ;
Comeau, Donnella S. ;
Hillis, James M. ;
Bridge, Christopher P. ;
Chin, John K. ;
Pawar, Jayashri ;
Pourvaziri, Ali ;
Sesic, Ivana ;
Sharaf, Elshaimaa ;
Cao, Jinjin ;
Noro, Flavia T. C. ;
Wiggins, Walter F. ;
Caton, M. Travis ;
Kitamura, Felipe ;
Dreyer, Keith J. ;
Kalafut, John F. ;
Andriole, Katherine P. ;
Pomerantz, Stuart R. ;
Gonzalez, Ramon G. ;
Lev, Michael H. .
SCIENTIFIC REPORTS, 2023, 13 (01)
[7]   Automated ASPECT rating: comparison between the Frontier ASPECT Score software and the Brainomix software [J].
Goebel, Juliane ;
Stenzel, Elena ;
Guberina, Nika ;
Wanke, Isabel ;
Koehrmann, Martin ;
Kleinschnitz, Christoph ;
Umutlu, Lale ;
Forsting, Michael ;
Moenninghoff, Christoph ;
Radbruch, Alexander .
NEURORADIOLOGY, 2018, 60 (12) :1267-1272
[8]  
Guzik Amy, 2017, Continuum (Minneap Minn), V23, P15, DOI [10.1212/con.0000000000000416, 10.1212/CON.0000000000000416]
[9]  
Han M., SEGTHOR ISBI 2019, V2019, P1
[10]   Automated ASPECT scoring in acute ischemic stroke: comparison of three software tools [J].
Hoelter, Philip ;
Muehlen, Iris ;
Goelitz, Philipp ;
Beuscher, Vanessa ;
Schwab, Stefan ;
Doerfler, Arnd .
NEURORADIOLOGY, 2020, 62 (10) :1231-1238