Optimizing extrusion-based 3D bioprinting of plant cells with enhanced resolution and cell viability

被引:0
作者
Zhou, Dezhi [1 ,3 ,4 ]
Li, Peixi [1 ,3 ,4 ]
Yu, Shuang [1 ,3 ,4 ]
Cui, Zhenhua [1 ,3 ,4 ]
Xu, Tao [5 ]
Ouyang, Liliang [1 ,2 ,3 ,4 ]
机构
[1] Tsinghua Univ, Biomfg Ctr, Dept Mech Engn, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Beijing 100084, Peoples R China
[3] Biomfg & Rapid Forming Technol Key Lab Beijing, Beijing 100084, Peoples R China
[4] Biomfg & Engn Living Syst Innovat Int Talents Base, Beijing 100084, Peoples R China
[5] Tsinghua Univ, Res Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
plant cells; bioprinting; plant cell immobilization; cell printing; parameter optimization; IMMOBILIZATION; SHEAR; SUSPENSIONS; ALGINATE; GROWTH;
D O I
10.1088/1758-5090/adada1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
3D bioprinting of plant cells has emerged as a promising technology for plant cell immobilization and related applications. Despite the numerous progress in mammalian cell printing, the bioprinting of plant cells is still in its infancy and needs further investigation. Here, we present a systematic study on optimizing the 3D bioprinting of plant cells, using carrots as an example, towards enhanced resolution and cell viability. We mainly investigated the effects of cell cluster forms and nozzle size on the rheological, extrusion, and printability properties of plant cell bioinks, as well as on the resultant cell viability and growth. We found that when the printing nozzle is larger than 85% of the cell clusters embedded in the bioink, smooth extrusion and good printability can be achieved together with considerable cell viability and long-term growth. Specifically, we optimized a bioink composited with suspension-cultured carrot cells, which exhibited better uniformity, smoother extrusion, and higher cell viability over 1 month culture compared to those with the regular callus or fragmented callus. This work provides a practical guideline for optimizing plant cell bioprinting from the bioink development to the printing outcome assessment. It highlights the importance of selecting a matched nozzle and cell cluster and might provide insights for a better understanding and exploitation of plant cell bioprinting.
引用
收藏
页数:13
相关论文
共 34 条
[1]   Physical, mechanical, and microstructural characterization of novel, 3D-printed, tunable, lab-grown plant materials generated from Zinnia elegans cell cultures [J].
Beckwith, Ashley L. ;
Borenstein, Jeffrey T. ;
Velasquez-Garcia, Luis F. .
MATERIALS TODAY, 2022, 54 :27-41
[2]   Tunable plant-based materials via in vitro cell culture using a Zinnia elegans model [J].
Beckwith, Ashley L. ;
Borenstein, Jeffrey T. ;
Velasquez-Garcia, Luis F. .
JOURNAL OF CLEANER PRODUCTION, 2021, 288
[3]   Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions [J].
Dong, Nai-Qian ;
Lin, Hong-Xuan .
JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2021, 63 (01) :180-209
[4]   STRATEGIES FOR THE IMPROVEMENT OF SECONDARY METABOLITE PRODUCTION IN PLANT-CELL CULTURES [J].
DORNENBURG, H ;
KNORR, D .
ENZYME AND MICROBIAL TECHNOLOGY, 1995, 17 (08) :674-684
[5]   Engineering considerations on extrusion-based bioprinting: interactions of material behavior, mechanical forces and cells in the printing needle [J].
Emmermacher, Julia ;
Spura, David ;
Cziommer, Jasmina ;
Kilian, David ;
Wollborn, Tobias ;
Fritsching, Udo ;
Steingroewer, Juliane ;
Walther, Thomas ;
Gelinsky, Michael ;
Lode, Anja .
BIOFABRICATION, 2020, 12 (02)
[6]   Essential versus accessory aspects of cell death: recommendations of the NCCD 2015 [J].
Galluzzi, L. ;
Bravo-San Pedro, J. M. ;
Vitale, I. ;
Aaronson, S. A. ;
Abrams, J. M. ;
Adam, D. ;
Alnemri, E. S. ;
Altucci, L. ;
Andrews, D. ;
Annicchiarico-Petruzzelli, M. ;
Baehrecke, E. H. ;
Bazan, N. G. ;
Bertrand, M. J. ;
Bianchi, K. ;
Blagosklonny, M. V. ;
Blomgren, K. ;
Borner, C. ;
Bredesen, D. E. ;
Brenner, C. ;
Campanella, M. ;
Candi, E. ;
Cecconi, F. ;
Chan, F. K. ;
Chandel, N. S. ;
Cheng, E. H. ;
Chipuk, J. E. ;
Cidlowski, J. A. ;
Ciechanover, A. ;
Dawson, T. M. ;
Dawson, V. L. ;
De laurenzi, V. ;
De Maria, R. ;
Debatin, K-M ;
Di Daniele, N. ;
Dixit, V. M. ;
Dynlacht, B. D. ;
El-Deiry, W. S. ;
Fimia, G. M. ;
Flavell, R. A. ;
Fulda, S. ;
Garrido, C. ;
Gougeon, M-L ;
Green, D. R. ;
Gronemeyer, H. ;
Hajnoczky, G. ;
Hardwick, J. M. ;
Hengartner, M. O. ;
Ichijo, H. ;
Joseph, B. ;
Jost, P. J. .
CELL DEATH AND DIFFERENTIATION, 2015, 22 (01) :58-73
[7]   Immobilization of Nicotiana tabacum plant cell suspensions within calcium alginate gel beads for the production of enhanced amounts of scopolin [J].
Gillet, F ;
Roisin, C ;
Fliniaux, MA ;
Jacquin-Dubreuil, A ;
Barbotin, JN ;
Nava-Saucedo, JE .
ENZYME AND MICROBIAL TECHNOLOGY, 2000, 26 (2-4) :229-234
[8]   A REVIEW OF THE EFFECTS OF SHEAR AND INTERFACIAL PHENOMENA ON CELL VIABILITY [J].
HUA, JM ;
ERICKSON, LE ;
YIIN, TY ;
GLASGOW, LA .
CRITICAL REVIEWS IN BIOTECHNOLOGY, 1993, 13 (04) :305-328
[9]   Recent applications of plant cell culture technology in cosmetics and foods [J].
Krasteva, Gergana ;
Georgiev, Vasil ;
Pavlov, Atanas .
ENGINEERING IN LIFE SCIENCES, 2021, 21 (3-4) :68-76
[10]   Green bioprinting: Viability and growth analysis of microalgae immobilized in 3D-plotted hydrogels versus suspension cultures [J].
Krujatz, Felix ;
Lode, Anja ;
Brueggemeier, Sophie ;
Schuetz, Kathleen ;
Kramer, Julius ;
Bley, Thomas ;
Gelinsky, Michael ;
Weber, Jost .
ENGINEERING IN LIFE SCIENCES, 2015, 15 (07) :678-688