Strong metric dimension of clean graphs of commutative rings

被引:0
作者
Mathil, Praveen [1 ]
Kumar, Jitender [1 ]
机构
[1] Birla Inst Technol & Sci Pilani, Dept Math, Pilani 333031, India
关键词
Clean elements of a ring; strong metric dimension; Artinian ring; reduced ring; IDEMPOTENT; ELEMENTS; UNIT; SUM;
D O I
10.1142/S0219498826501197
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a ring with unity. The clean graph Cl(R) of a ring R is the simple undirected graph whose vertices are of the form (e,u), where e is an idempotent element and u is a unit of the ring R, and two vertices (e,u), (f,v) of Cl(R) are adjacent if and only if ef = fe = 0 or uv = vu = 1. In this paper, for a commutative ring R, first we obtain the strong resolving graph of Cl(R) and its independence number. Using them, we determine the strong metric dimension of the clean graph of an arbitrary commutative ring. As an application, we compute the strong metric dimension of Cl(R), where R is a commutative Artinian ring.
引用
收藏
页数:20
相关论文
共 35 条
[1]   Generalized Cayley graphs associated to commutative rings [J].
Afkhami, Mojgan ;
Khashyarmanesh, Kazem ;
Nafar, Khosro .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (03) :1040-1049
[2]   ON THE IDEMPOTENT GRAPH OF A RING [J].
Akbari, S. ;
Habibi, M. ;
Majidinya, A. ;
Manaviyat, R. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (06)
[3]   The total graph and regular graph of a commutative ring [J].
Akbari, S. ;
Kiani, D. ;
Mohammadi, F. ;
Moradi, S. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (12) :2224-2228
[4]   The total graph of a commutative ring [J].
Anderson, David F. ;
Badawi, Ayman .
JOURNAL OF ALGEBRA, 2008, 320 (07) :2706-2719
[5]   Commutative rings whose elements are a sum of a unit and idempotent [J].
Anderson, DD ;
Camillo, VP .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (07) :3327-3336
[6]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[7]  
[Anonymous], 1969, Introduction to Commutative Algebra
[8]   UNIT GRAPHS ASSOCIATED WITH RINGS [J].
Ashrafi, N. ;
Maimani, H. R. ;
Pournaki, M. R. ;
Yassemi, S. .
COMMUNICATIONS IN ALGEBRA, 2010, 38 (08) :2851-2871
[9]   COLORING OF COMMUTATIVE RINGS [J].
BECK, I .
JOURNAL OF ALGEBRA, 1988, 116 (01) :208-226
[10]  
Behboodi M, 2011, J ALGEBRA APPL, V10, P741, DOI 10.1142/S0219498811004902