Finiteness property in Cantor real numeration systems

被引:0
|
作者
Masakova, Zuzana [1 ]
Pelantova, Edita [1 ]
Studenicova, Katarina [1 ]
机构
[1] Czech Tech Univ, FNSPE, Prague, Czech Republic
关键词
Numeration systems; Finiteness property; Rewriting rules; Pisot number; ARITHMETICS;
D O I
10.1007/s13398-024-01695-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a numeration system which is a common generalization of the positional systems introduced by Cantor and Renyi. Number representations are obtained using a composition of beta(k)-transformations for a given sequence of real bases B = (beta k)(k >= 1), beta(k) > 1. We focus on arithmetical properties of the set of numbers with finite B-expansion in case that B is an alternate base, i.e B is a periodic sequence. We provide necessary conditions for the so-called finiteness property. We further show a sufficient condition using rewriting rules on the language of representations. The proof is constructive and provides a method for performing addition of expansions in alternate bases. Finally, we give a family of alternate bases that satisfy this sufficient condition. Our work generalizes the results of Frougny and Solomyak obtained for the case when the base B is a constant sequence.
引用
收藏
页数:25
相关论文
共 33 条
  • [1] Finiteness property in Cantor real numeration systemsFiniteness property in Cantor real numeration systemsZ. Masáková et al.
    Zuzana Masáková
    Edita Pelantová
    Katarína Studeničová
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2025, 119 (2):
  • [2] A certain finiteness property of Pisot number systems
    Akiyama, S
    Rao, H
    Steiner, W
    JOURNAL OF NUMBER THEORY, 2004, 107 (01) : 135 - 160
  • [3] Characterization algorithms for shift radix systems with finiteness property
    Weitzer, Mario
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (01) : 211 - 232
  • [4] ARITHMETICS IN NUMERATION SYSTEMS WITH NEGATIVE QUADRATIC BASE
    Masakova, Zuzana
    Vavra, Tomas
    KYBERNETIKA, 2011, 47 (01) : 74 - 92
  • [5] On the finiteness property for rational matrices
    Jungers, Raphael M.
    Blondel, Vincent D.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (10) : 2283 - 2295
  • [6] SOME CLASS OF CUBIC PISOT NUMBERS WITH FINITENESS PROPERTY
    Takamizo, Fumichika
    Yoshida, Masamichi
    TSUKUBA JOURNAL OF MATHEMATICS, 2022, 46 (01) : 67 - 119
  • [7] Falseness of the finiteness property of the spectral subradius
    Czornik, Adam
    Jurgas, Piotr
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2007, 17 (02) : 173 - 178
  • [8] Self Generating Sets and Numeration Systems
    Garth, David
    Palmer, Joseph
    Ta, Ha
    COMBINATORIAL NUMBER THEORY, 2009, : 41 - 56
  • [9] A Full Characterization of Bertrand Numeration Systems
    Charlier, Emilie
    Cisternino, Celia
    Stipulanti, Manon
    DEVELOPMENTS IN LANGUAGE THEORY (DLT 2022), 2022, 13257 : 102 - 114
  • [10] Arrays, numeration systems and Frankenstein games
    Fraenkel, AS
    THEORETICAL COMPUTER SCIENCE, 2002, 282 (02) : 271 - 284